5.2二叉搜索树遍历(前序、中序、后序、层次、广度优先遍历)

时间:2021-03-20 11:20:24

 

前言:在上一节中,我们对树及其相关知识做了了解,对二叉搜索树做了基本的实现,下面我们继续完善我们的二叉搜索树。

对于二叉树,有深度遍历和广度遍历,深度遍历有前序、中序以及后序三种遍历方法,广度遍历即我们寻常所说的层次遍历,如图:

5.2二叉搜索树遍历(前序、中序、后序、层次、广度优先遍历)

因为树的定义本身就是递归定义,所以对于前序、中序以及后序这三种遍历我们使用递归的方法实现,而对于广度优先遍历需要选择其他数据结构实现,本例中我们使用队列来实现广度优先遍历。

四种基本的遍历思想为:

前序遍历:根结点 ---> 左子树 ---> 右子树
中序遍历:左子树---> 根结点 ---> 右子树
后序遍历:左子树 ---> 右子树 ---> 根结点
层次遍历:从上到下,从左到右。

比如,以下二叉树的各种遍历:

5.2二叉搜索树遍历(前序、中序、后序、层次、广度优先遍历)

前序遍历:5-3-2-4-6-8
中序遍历:2-3-4-5-6-8
后序遍历:2-4-3-8-6-5
层次遍历:5-3-6-2-4-8

一、前序遍历

依据上文提到的遍历思路:根结点 ---> 左子树 ---> 右子树,代码实现如下:

 //二分搜索树的前序遍历(前序遍历:根结点 ---> 左子树 ---> 右子树)
    public void preOrder() {
        preOrder(root);
    }

    //前序遍历以node为根的二分搜索树,递归算法
    private void preOrder(Node node) {
        if (node == null) {
            return;
        }
        System.out.println(node.e);
        preOrder(node.left);
        preOrder(node.right);
    }

二、中序遍历

依据上文提到的遍历思路:左子树 ---> 根结点 ---> 右子树,代码实现如下:

   //二分搜索树的中序遍历(中序遍历:左子树---> 根结点 ---> 右子树)
    public void inOrder() {
        inOrder(root);
    }

    //中序遍历以node为根的二分搜索树,递归算法
    private void inOrder(Node node) {
        if (node == null) {
            return;
        }
        inOrder(node.left);
        System.out.println(node.e);
        inOrder(node.right);
    }

三、后序遍历

依据上文提到的遍历思路:左子树 ---> 右子树 ---> 根结点,代码实现如下:

    //二分搜索树的后序遍历(后序遍历:左子树 ---> 右子树 ---> 根结点)
    public void postOrder() {
        postOrder(root);
    }

    //后序遍历以node为根的二分搜索树,递归算法
    private void postOrder(Node node) {
        if (node == null) {
            return;
        }
        postOrder(node.left);
        postOrder(node.right);
        System.out.println(node.e);
    }

四、层次遍历

对于层次遍历,我们基于队列来实现,思路如下:
(1)先在队列中增加根结点
(2)对于随意其余任意节点,在其出队列的时候访问(假设左孩子和右孩子有不为空的情况,入队列)
代码实现如下:

//层次遍历--(基于队列实现)
    public void levelOrder() {

        Queue<Node> q = new LinkedList<>();
        q.add(root);

        while (!q.isEmpty()) {
            Node cur = q.remove();
            System.out.println(cur.e);
            if (cur.left != null) {
                q.add(cur.left);
            }
            if (cur.right!=null){
                q.add(cur.right);
            }
        }
    }

源代码地址 https://github.com/FelixBin/dataStructure/blob/master/src/BST/BST.java