python数据分析工具包(1)——Numpy(一)

时间:2024-07-12 12:35:50

    在本科阶段,我们常用的科学计算工具是MATLAB。下面介绍python的一个非常好用而且功能强大的科学计算库——Numpy。

  • a powerful N-dimensional array object(一个强大的N维数组对象)
  • sophisticated (broadcasting) functions (先进的(广播?)函数)
  • tools for integrating C/C++ and Fortran code(集成的C / C++和Fortran代码工具)
  • useful linear algebra, Fourier transform, and random number capabilities(有用的线性代数,傅立叶变换和随机数能力)

    以上是官方文档的介绍,具体资料可以按参考这个网站: http://www.numpy.org/

    依旧是pip install numpy安装这个包。我们在ipython中举一些例子来学习它的一些常用操作。当然在此之前,建议先了解一下矩阵等相关的数学知识,就当温习一下大学的线代高数部分了。

 #导入numpy
>>> import numpy as np
#生成一个指定内容的数组
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> a.shape #数组行列数
(3, 5)
>>> a.ndim #数组维度
2
>>> a.dtype.name #数组中元素类型
'int64'
>>> a.itemsize #数组中每个元素的字节大小
8
>>> a.size #数组元素的总数
15
>>> type(a) #输出a的属性
<type 'numpy.ndarray'>
#直接给定元素生成数组
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

    numpy可以生成指定的数组。

 C:\Users\Administrator\Desktop
λ ipython
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) [MSC v.1900 64 bit (AMD64)]
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help. In [1]: import numpy as np In [2]: a=np.zeros([3,4]) #生成全零阵 In [3]: a
Out[3]:
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]) In [4]: b=np.ones([3,4]) #生成全1阵 In [5]: b
Out[5]:
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]) In [6]: c=np.random.rand(3,4) #生成随机阵 In [7]: c
Out[7]:
array([[0.36417168, 0.24336724, 0.78826727, 0.42894367],
[0.77198615, 0.95897315, 0.25628233, 0.53995372],
[0.02777746, 0.25093856, 0.14544893, 0.10475779]]) In [8]: d=np.eye(3) #生成单位阵 In [9]: d
Out[9]:
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]) In [10]: e=np.mat([[1,2,3],[4,5,6],[7,8,9]]) #矩阵化 In [11]: e
Out[11]:
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]) In [12]: f=np.power(e,2) #计算N次幂 In [13]: f
Out[13]:
matrix([[ 1, 4, 9],
[16, 25, 36],
[49, 64, 81]], dtype=int32) In [14]: g=f.T #求转置矩阵 In [15]: g
Out[15]:
matrix([[ 1, 16, 49],
[ 4, 25, 64],
[ 9, 36, 81]], dtype=int32) In [16]:

    下面对array()和mat()做一个区分。初学者很容易混淆。

    np.array(a)  是将列表数组化, 它与另一个narray的乘法并不是按照矩阵乘法进行的,而是对应元素相乘 。而mat(),在上面的例子可以清楚地看出来,他生成的对象是一个matrix。即将数组矩阵化。对矩阵使用shape()方法,会返回矩阵的维度,而数组则会返回它的行和列。详细资料可以参考官方文档。