Bone Collector II
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4178 Accepted Submission(s): 2174
Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602
Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.
If the total number of different values is less than K,just ouput 0.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
2
0
题目链接:HDU 2639
用in[]记录取第i的物品的答案,用out[]记录不取的答案,然后从in与out中寻找第1~k个值,放入dp[v][k]中……由于in与out至少在k范围内均是单调不增的序列,那只要判断一下重复的即可,相当于01背包多了个过程记录
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=110;
const int K=35;
int w[N],c[N];
int in[K],out[K];
int dp[N*10][K];
void init()
{
CLR(in,0);
CLR(out,0);
CLR(dp,0);
}
int main(void)
{
int n,v,k,i,j,q;
int tcase;
scanf("%d",&tcase);
while (tcase--)
{
scanf("%d%d%d",&n,&v,&k);
init();
for (i=0; i<n; ++i)
scanf("%d",&w[i]);
for (i=0; i<n; ++i)
scanf("%d",&c[i]);
for (i=0; i<n; ++i)
{
for (j=v; j>=c[i]; --j)
{
for (q=1; q<=k; ++q)
{
in[q]=dp[j-c[i]][q]+w[i];
out[q]=dp[j][q];
}
int a=1,b=1,c=1;
in[k+1]=out[k+1]=-INF;
while (c<=k&&(in[a]!=-INF||out[b]!=-INF))
{
if(in[a]>out[b])
dp[j][c]=in[a++];
else
dp[j][c]=out[b++];
if(dp[j][c]!=dp[j][c-1])
++c;
}
}
}
printf("%d\n",dp[v][k]);
}
return 0;
}