编程方法论:
面向过程:按照一个固定的流程去模拟解决问题的流程
函数式:编程语言定义的函数 + 数学意义的函数
y = 2*x + 1 函数用编程语言实现
def fun(x):
return 2*x + 1
面向对象:
函数式编程
1. 不可变:不用变量保存状态,不可修改变量
# 函数式编程 # 1. 不可变:不用变量保存状态,不可修改变量 # 非函数式 a = 1 def test1(): global a a += 1 return a # 函数式 n = 1 def test2(): return n + 1
2.函数即“变量”
a.函数可以当参数传递
b.返回值可以式函数名
def foo(n): print(n) def bar(name): print('my name is %s' % name) foo(bar) foo(bar('zhangsan'))
输出:
<function bar at 0x0000024E4B385C80> my name is zhangsan None
3.高阶函数 :1.函数接受的参数是一个函数名 2.返回值是函数名,两个条件满足一个就是高阶函数
# 把函数当中参数传给另外一个函数 def foo(n): print(n) def bar(name): print('my name is %s' % name) foo(bar) foo(bar('zhangsan')) # 返回值中包含函数 def test3(): print('from test3') def handle(): print('from handle') return test3() handle()
4.尾调用
在函数的最后一步调用另外一个函数(最后一行不一定是最后一步),调用函数的栈状态不需要保存,可以用来优化递归函数,俗称:尾递归
map函数
# map函数 # num_l = [1, 2, 3, 4] #求平方 # ret = [] # for i in num_l: # ret.append(i**2) # print(ret) def add_one(x): return x + 1 def reduce_one(x): return x - 1 def pingfang(x): return x**2 def map_test(func, array): ret = [] for i in array: res = func(i) ret.append(res) return ret num_2 = [1, 2, 3, 4] ret = map_test(add_one, num_2) print(ret) ret = map_test(reduce_one, num_2) print(ret) ret = map_test(pingfang, num_2) print(ret) ret = map_test(lambda x:x+2, num_2) # lambda方式 print(ret) res = map(lambda x: x + 2, num_2) # 内置map函数 ,返回可迭代对象 print(res) # <map object at 0x000001F62514BF60> print(list(res)) # [3, 4, 5, 6] print(list(map(reduce_one, num_2))) # [0, 1, 2, 3] msg = 'hello' print(list(map(lambda x: x.upper(), msg)))
filter函数
# filter people = ['sb_A', 'sb_B', 'C_sb', 'D_sb'] def end_with_sb(n): return n.endswith('sb') def start_with_sb(n): return n.startswith('sb') def filter_test1(array): res1 = [] for p in array: if not p.startswith('sb'): res1.append(p) return res1 def filter_test2(fun, array): res1 = [] for p in array: if not fun(p): res1.append(p) return res1 print(filter_test1(people)) print(filter_test2(start_with_sb, people)) print(filter_test2(end_with_sb, people)) print(filter_test2(lambda n1: n1.endswith('sb'), people)) print('*'*20) ret2 = filter(lambda n2: n2.endswith('sb'), people) # 内置函数,返回一个内存地址,保存了list地址 print(list(ret2)) # ['C_sb', 'D_sb'] ret3 = filter(lambda n2: not n2.endswith('sb'), people) # lambda n2: n2.endswith('sb') 返回一个bool值,为true则保留 print(list(ret3)) # ['sb_A', 'sb_B']
info = [{'name': 'a', 'score': 80}, {'name': 'b', 'score': 90}, {'name': 'c', 'score': 90}] res = filter(lambda i: i['score'] < 90, info) print(list(res)) # [{'name': 'a', 'score': 80}
reduce函数
# reduce函数 num_3 = [1, 2, 3, 100] def reduce_test(fun, array, init=None): if init is None: res = array.pop(0) else: res = init for num in array: res = fun(res,num) return res res = reduce_test(lambda x, y: x*y, num_3) print(res) # 600 res = reduce_test(lambda x, y: x*y, num_3, 10) print(res) # 6000 from functools import reduce num_4 = [1, 2, 3, 100] res = reduce(lambda x, y: x+y, num_4, 10) print(res) # 116