题目大意:有两家公司都想向*申请某些资源的使用权,并且他们都提供了一些申请列表,列表中含有申请费用和资源种类,同一家公司的申请列表之间不含有重复的资源。*只可以完整地接受和拒绝谋一份申请列表,问*的最大收益是多少。
题目分析:如果两家公司的申请之间没有任何矛盾,那么最大的收益就是所有的申请费用之和。如果某些列表之间有矛盾,那么就需要用最小的代价使两家公司的申请没有任何矛盾。将每一条申请视作一个点,增加源点s和汇点t,从s向甲公司的每一条申请连一条弧,容量为该申请的费用;从乙公司的每一条申请向t连一条弧,容量为每条申请对应的费用;然后对于甲公司的每一条申请,向所有与它矛盾的申请(只可能是乙公司的申请)连一条弧,容量为无穷大。那么,最小割便是这个最小代价,用申请费用总和减去最小代价便是最大收益。
代码如下:
# include<iostream>
# include<cstdio>
# include<cmath>
# include<string>
# include<vector>
# include<list>
# include<set>
# include<map>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std; # define LL long long
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const double inf=1e30;
const int INF=1<<30;
const int N=6005; /////////////////////////////////
struct Edge
{
int fr,to,cap,fw;
Edge(int _fr,int _to,int _cap,int _fw):fr(_fr),to(_to),cap(_cap),fw(_fw){}
};
struct Dinic{
vector<Edge>edges;
vector<int>G[N];
int d[N],vis[N],cur[N];
int s,t; void init(int n,int s,int t)
{
this->s=0,this->t=t;
REP(i,0,n) G[i].clear();
edges.size();
} void addEdge(int u,int v,int cap)
{
edges.push_back(Edge(u,v,cap,0));
edges.push_back(Edge(v,u,0,0));
int len=edges.size();
G[u].push_back(len-2);
G[v].push_back(len-1);
} bool BFS()
{
CL(vis,0);
d[s]=0;
vis[s]=1;
queue<int>q;
q.push(s);
while(!q.empty()){
int x=q.front();
q.pop();
REP(i,0,G[x].size()){
Edge &e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.fw){
d[e.to]=d[x]+1;
vis[e.to]=1;
q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t||a==0) return a;
int flow=0,f;
for(int &i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=DFS(e.to,min(a,e.cap-e.fw)))>0){
e.fw+=f;
edges[G[x][i]^1].fw-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int MaxFlow()
{
int flow=0;
while(BFS()){
CL(cur,0);
flow+=DFS(s,INF);
}
return flow;
}
};
Dinic dinic;
//////////////////////////////////// int sum,maxn;
int a[300005],b[300005];
bool vis[3005][3005];
int p1[3005],p2[3005]; void init()
{
maxn=sum=0;
CL(a,0);
CL(b,0);
} bool read(int &x)
{
x=0;
char c;
while(c=getchar()){
if(c=='\n') return false;
if(c==' ') return true;
x=x*10+c-'0';
}
} int main()
{
int T,n,m,cas=0;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
REP(i,1,n+1){
scanf("%d",&p1[i]);
sum+=p1[i];
int x;
getchar();
while(read(x))
{
a[x]=i;
maxn=max(maxn,x);
}
a[x]=i;
maxn=max(maxn,x);
}
scanf("%d",&m);
dinic.s=0,dinic.t=n+m+1;
REP(i,1,m+1){
scanf("%d",&p2[i]);
sum+=p2[i];
int x;
while(read(x))
{
b[x]=i;
maxn=max(maxn,x);
}
b[x]=i;
maxn=max(maxn,x);
}
dinic.init(n+m+2,0,n+m+1);
REP(i,1,n+1) dinic.addEdge(0,i,p1[i]);
REP(i,1,m+1) dinic.addEdge(i+n,n+m+1,p2[i]);
CL(vis,false);
REP(i,1,maxn+1){
if(!a[i]||!b[i]||vis[a[i]][b[i]]) continue;
vis[a[i]][b[i]]=true;
dinic.addEdge(a[i],b[i]+n,INF);
}
printf("Case %d:\n",++cas);
printf("%d\n",sum-dinic.MaxFlow());
if(T) printf("\n");
}
return 0;
}