The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
N-Queens问题是回溯的典型题目了,跟数独的解法有点像。我们用path来存储可能出现的result的值,每次给新的一行中选择一个字符设为Q,然后检查其合法性。直到得到正确的解就放入result中。检查合法性的时候要检查列,左斜线和右斜线,代码如下:
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> result;
vector<string> path(n, string(n,'.'));
find(0, n, result, path);
return result;
}
void find(int row, int n, vector<vector<string>>& result,vector<string>& path){
if(row==n){
result.push_back(path);
return;
}
for(int col=0;col<n;col++){
if(check(n,row,col,path)){
path[row][col]='Q';
find(row+1,n,result,path);
path[row][col]='.';
}
}
}
bool check(int n, int row, int col, vector<string>& path){
for(int i=0;i<row;i++){
if(path[i][col]=='Q')
return false;
}
for(int r=row-1, c=col-1;r>=0 && c>=0;r--,c--){
if(path[r][c]=='Q')
return false;
}
for(int r=row-1, c=col+1;r>=0 && c<n;r--,c++){
if(path[r][c]=='Q')
return false;
}
return true;
}
};
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
与上个题相比,这个题只是要求输出结果的个数就可以了,不需要改太多的代码,设置一个全局的变量num,当找到一个解的时候,就把num++;其他的不需要修改,便可得到结果。
class Solution {
public:
int num;
int totalNQueens(int n) {
num=0;
vector<string> path(n,string(n,'.'));
find(0,n,path);
return num;
}
void find(int row, int n , vector<string>& path){
if(row==n)
num++;
for(int col=0;col<n;col++){
if(check(row,col,n,path)){
path[row][col]='Q';
find(row+1,n,path);
path[row][col]='.';
}
}
}
bool check(int row, int col, int n, vector<string>& path){
for(int i=0;i<row;i++){
if(path[i][col]=='Q')
return false;
}
for(int i=row-1,j=col-1;i>=0 && j>=0;i--,j--){
if(path[i][j]=='Q')
return false;
}
for(int i=row-1,j=col+1;i>=0 && j<n;i--,j++){
if(path[i][j]=='Q')
return false;
}
return true;
}
};