1、算法思想:
二分查找又称折半查找,它是一种效率较高的查找方法。
时间复杂度:O(nlogn)
二分算法步骤描述:
① 首先在有序序列中确定整个查找区间的中间位置 mid = ( low + high )/ 2
② 用待查关键字值与中间位置的关键字值进行比较;
若相等,则查找成功
若大于,则在后(右)半个区域继续进行折半查找
若小于,则在前(左)半个区域继续进行折半查找
③ 对确定的缩小区域再按折半查找,重复上述步骤。
2、实现:
//非递归,效率比较高 public static int binaryquery(int a[],int low,int high,int key) { if(low>high) return -1; while(low<=high) { int mid=low+(high-low)/2; if(a[mid]>key) { high = mid-1; } if(a[mid]<key) { low = mid+1; } if(a[mid]==key) { return mid; } } return -1; }
//递归,代码简洁 public static int binaryquery(int a[],int low,int high,int key) { if(low>high) return -1; int mid = low + (high-low)/2; if(a[mid]>key) { return binaryquery1(a, low, mid-1, key); } if(a[mid]<key) { return binaryquery1(a, mid+1, high, key); } if(a[mid]==key) { return mid; } return -1; }
3、注意地方:
mid的计算
算法一: mid = (low + high) / 2
算法二: mid = low + (high – low)/2
乍看起来,算法一简洁,算法二提取之后,跟算法一没有什么区别。但是实际上,区别是存在的。算法一的做法,在极端情况下,(low + high)存在着溢出的风险,进而得到错误的mid结果,导致程序错误。而算法二能够保证计算出来的mid,一定大于low,小于high,不存在溢出的问题。如数据库二分查找,数据库的一个索引页面(大小一般是8k或者是16k),能够存储的索引记录是有限的,因此肯定不会出现(low + high)溢出的风险。这也是为什么InnoDB中的中值,采用的就是算法一的实现。但是,作为一个严谨的程序设计人员,还是推荐使用算法二,将任何潜在的风险,扼杀于摇篮之中。
4、缺陷及优化:
(1)待排序列必须是有序的;
(2)只能是数组:查询快,增删插入删除慢
优化:使用二叉查找树,最好的平衡二叉树
借鉴博文:https://www.cnblogs.com/wxd0108/p/5465926.html
http://hedengcheng.com/?p=595