逐步讲解快速排序算法及C#版的实现示例

时间:2021-08-03 07:10:05

算法思想
快速排序是c.r.a.hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(divide-and-conquermethod)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
以一个数组作为示例,取区间第一个数为基准数

逐步讲解快速排序算法及C#版的实现示例

初始时,i = 0;  j = 9;   x = a[i] = 72
由于已经将a[0]中的数保存到x中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比x小或等于x的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++;  这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于x的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:

逐步讲解快速排序算法及C#版的实现示例

i = 3;   j = 7;   x=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将x填入a[5]。
数组变为:

逐步讲解快速排序算法及C#版的实现示例

可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =l; j = r; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。

c#实现示例

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
namespace quicksort
{
  public class quicksortclass
  {
    public int division(list<int> list, int left, int right)
    {
      //首先挑选一个基准元素
      int basenum = list[left];
      while (left < right)
      {
        //从数组的右端开始向前找,一直找到比base小的数字为止(包括base同等数)
        while (left < right && list[right] >= basenum)
          right = right - 1;
        //最终找到了比basenum小的元素,要做的事情就是此元素放到base的位置
        list[left] = list[right];
        //从数组的左端开始向后找,一直找到比base大的数字为止(包括base同等数)
        while (left < right && list[left] <= basenum)
          left = left + 1;
        //最终找到了比basenum大的元素,要做的事情就是将此元素放到最后的位置
        list[right] = list[left];
      }
      //最后就是把basenum放到该left的位置
      list[left] = basenum;
      //最终,我们发现left位置的左侧数值部分比left小,left位置右侧数值比left大
//至此,我们完成了第一篇排序
      return left;
    }
 
    public void quicksort(list<int> list, int left, int right)
    {
      //左下标一定小于右下标,否则就超越了
      if (left < right)
      {
        //对数组进行分割,取出下次分割的基准标号
        int i = division(list, left, right);
 
        //对“基准标号“左侧的一组数值进行递归的切割,以至于将这些数值完整的排序
        quicksort(list, left, i - 1);
 
        //对“基准标号“右侧的一组数值进行递归的切割,以至于将这些数值完整的排序
        quicksort(list, i + 1, right);
      }
    }
  }
}