测试pico在lfw上的检测率。
lfw给定的文件格式:
每个名称文件夹下有一张或多张图片。
#include "io.h"这是大爷给我的代码,list_folders(),遍历给定路径下的文件夹。list_files(),遍历给定路径下的文件。
std::vector<std::string> list_folders(std::string pathname)
{
std::vector<std::string> folders;
_finddata_t folder;
std::string findpath = pathname + "\\*";
long handle = _findfirst(findpath.c_str(),&folder);
if(handle == -1)
{
std::cerr << "no such path" << std::endl;
system("pause");
exit(-1);
}
do
{
if(folder.attrib & _A_SUBDIR)
{
if( (strcmp(folder.name, ".") != 0) && (strcmp(folder.name, "..") != 0) )
{
std::string newpath = pathname + "\\" + folder.name;
folders.push_back(newpath);
}
}
}while( _findnext(handle, &folder) == 0 );
return folders;
}
std::vector<std::string> list_files(std::string pathname)
{
std::vector<std::string> files;
_finddata_t file;
std::string findpath = pathname + "\\*";
long handle = _findfirst(findpath.c_str(),&file);
if(handle == -1)
{
std::cerr << "no such path" << std::endl;
system("pause");
exit(-1);
}
do
{
if(!(file.attrib & _A_SUBDIR))
{
files.push_back(pathname + "\\" + file.name);
}
}while( _findnext(handle, &file) == 0 );
return files;
}
在此基础上:
std::string root = "C:\\Users\\zhuqian\\Desktop\\pico_face_detect\\lfw\\lfw";其中调用的void process_image(IplImage* frame, int draw, const std::string& path)修改如下:
std::vector<std::string> all = list_folders(root);
for (std::vector<std::string>::const_iterator it = all.begin(); it!=all.end();++it)
{
//std::cout << *it << std::endl;
std::vector<std::string> filename = list_files(*it);
for (std::vector<std::string>::const_iterator subit = filename.begin();subit!=filename.end();
++subit)
{
IplImage* img;
allface += 1;
//
img = cvLoadImage(subit->c_str(), CV_LOAD_IMAGE_COLOR);
if(!img)
{
printf("# cannot load image from '%s'\n", subit->c_str());
return 0;
}
process_image(img, 1, *it);
cvReleaseImage(&img);
}
}
std::cout << "lossdect: " << lossdect << std::endl;
std::cout << "falsedect: " << falsedect << std::endl;
std::cout << "allface" << allface << std::endl;
std::cout << "lossdectRate: " << (double)lossdect/allface << std::endl;
std::cout << "facedectRate: " << (double)falsedect/allface << std::endl;
if(draw)结果:
for(i=0; i<ndetections; ++i)
if(qs[i]>=qthreshold) // check the confidence threshold
{
/*cv::Rect r1(cs[i]-ss[i]/2, rs[i]-ss[i]/2, ss[i], ss[i]); //矩阵标记
cv::Mat img(frame,0); //IplImage转Mat
cv::Mat face(img(r1));*/ //取矩阵
//std::stringstream s;
//s << i; //int转string的方法之一
//cv::imwrite(path + "result_" + s.str() + ".jpg", face);
cvCircle(frame, cvPoint(cs[i], rs[i]), ss[i]/2, CV_RGB(255, 0, 0), 4, 8, 0); // we draw circles here since height-to-width ratio of the detected face regions is 1.0f
}
static int nnn=0;
std::stringstream s;
s << nnn++;
if (ndetections==0) //记录误检漏检率,并在项目路径下写检测后的图片,便于人眼观察。
{
cv::imwrite("lossdect" + s.str() + ".jpg", cv::Mat(frame,0));
lossdect += 1;
}
if (ndetections>1)
{
falsedect += ndetections-1;
std::cout << path << std::endl;
cv::imwrite("falsedect" + s.str() + ".jpg", cv::Mat(frame,0));
}
else
{
cv::imwrite("right" + s.str() + ".jpg", cv::Mat(frame,0));
}
// if the `verbose` flag is set, print the results to standard output
if(verbose)
{
//
for(i=0; i<ndetections; ++i)
if(qs[i]>=qthreshold) // check the confidence threshold
printf("%d %d %d %f\n", (int)rs[i], (int)cs[i], (int)ss[i], qs[i]);
//
//printf("# %f\n", 1000.0f*t); // use '#' to ignore this line when parsing the output of the program
}
样本:13233. 漏检84. 误检150. (漏检率:0.6%,误检率:1.1%)
还有参数设置,如果参数能够根据样本中人脸的大小(先验知识)作相应修改,效果会更好。