邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

时间:2022-10-12 09:55:21

matrix.c

#include <stdio.h>
#include
<stdlib.h>
#include
<stdbool.h>
#include
<limits.h>

#include
"aqueue.h"

#define MAX_VALUE INT_MAX
#define MAX_NUM 100

typedef
char node_type;

typedef
struct matrix
{
node_type vertex[MAX_NUM];
//节点信息
int arcs[MAX_NUM][MAX_NUM];//矩阵
int vertexs, brim;//节点数,边数
} Graph;

void g_create(Graph * graph)
{
int num;
int i, j, k;
char c;

printf(
"输入节点个数:");
scanf(
"%d", &graph->vertexs);
getchar();
//接受回车键

printf(
"输入节点信息:");
for ( i = 0; i < graph->vertexs; i++ )
{
scanf(
"%c", &graph->vertex[i]);
getchar();
}

for ( i = 0; i < graph->vertexs; i++ )//初始化矩阵
for ( j = 0; j < graph->vertexs; j++ )
graph
->arcs[i][j] = MAX_VALUE;
graph
->brim = 0;//初始化边数

// i 代表行数, j 是用来循环的, k 代表列数
for ( i = 0; i < graph->vertexs; i++ )
{
printf(
"输入与%c节点相邻的节点与权值,输入#号键结束\n", graph->vertex[i]);
for ( j = 0; j < graph->vertexs; j++ )
{
scanf(
"%c", &c);
if ( c == '#' )
{
getchar();
break;
}
scanf(
"%d", &num);
for ( k = 0; k < graph->vertexs; k++ )
{
if ( graph->vertex[k] != c )
continue;
graph
->arcs[i][k] = num;
graph
->brim++;
}
getchar();
}
}
graph
->brim /= 2;
}

void g_printMatrix(Graph * graph)//打印矩阵状态
{
int i, j;

printf(
"brim = %d\n", graph->brim);
for ( i = 0; i < graph->vertexs; i++ )
{
for ( j = 0; j < graph->vertexs; j++ )
{
printf(
"%-10d ", graph->arcs[i][j]);
}
printf(
"\n");
}
}

//深度优先遍历
static void dfs_graph(Graph * graph, bool visited[], const int i);
void g_depth_first_search(Graph * graph)
{
bool visited[graph->vertexs];
int i;
for ( i = 0; i < graph->vertexs; i++ )
visited[i]
= false;
visited[
0] = true;
dfs_graph(graph, visited,
0);
printf(
"\n");
}

static void dfs_graph(Graph * graph, bool visited[], const int i)
{
int j;
printf(
"%c\t", graph->vertex[i]);
for ( j = 0; j < graph->vertexs; j++ )//依次检查矩阵
{
if ( graph->arcs[i][j] != MAX_VALUE && !visited[j] )//i 代表矩阵的行, j 代表矩阵的列
{
visited[j]
= true;
dfs_graph(graph, visited, j);
}
}
}

//广度优先遍历
void g_breadth_first_search(Graph * graph)
{
Queue queue;
//队列存储的是节点数组的下标(int)
bool visited[graph->vertexs];
int i, pos;

q_init(
&queue);
for ( i = 0; i < graph->vertexs; i++ )
visited[i]
= false;

visited[
0] = true;
q_push(
&queue, 0);
while ( !q_empty(&queue) )
{
pos
= q_front(&queue);
printf(
"%c\t", graph->vertex[pos]);
for ( i = 0; i < graph->vertexs; i++ )//把队头元素的邻接点入队
{
if ( !visited[i] && graph->arcs[pos][i] != MAX_VALUE )
{
visited[i]
= true;
q_push(
&queue, i);
}
}
q_pop(
&queue);
}
printf(
"\n");
}

//最小生成树prim算法
static void init_prim(Graph * graph, Graph * prim_tree);
void Prim(Graph * graph, Graph * prim_tree)
{
bool visited[graph->vertexs];
int i, j, k, h;
int power, power_j, power_k;

for ( i = 0; i < graph->vertexs; i++ )
visited[i]
= false;
init_prim(graph, prim_tree);

visited[
0] = true;
for ( i = 0; i < graph->vertexs; i++ )
{
power
= MAX_VALUE;
for ( j = 0; j < graph->vertexs; j++ )
{
if ( visited[j] )
{
for ( k = 0; k < graph->vertexs; k++ )
{
if ( power > graph->arcs[j][k] && !visited[k] )
{
power
= graph->arcs[j][k];
power_j
= j;
power_k
= k;
}
}
}
}
//min power
if ( !visited[power_k] )
{
visited[power_k]
= true;
prim_tree
->arcs[power_j][power_k] = power;
}
}
}

static void init_prim(Graph * graph, Graph * prim_tree)
{
int i, j;

prim_tree
->vertexs = graph->vertexs;
for ( i = 0; i < prim_tree->vertexs; i++ )//初始化节点
prim_tree->vertex[i] = graph->vertex[i];
for ( i = 0 ; i < prim_tree->vertexs; i++ )//初始化矩阵
{
for ( j = 0; j < prim_tree->vertexs; j++ )
{
prim_tree
->arcs[i][j] = MAX_VALUE;
}
}
}

//最小生成树kruskal算法
typedef struct
{
int head;//边的始点下标
int tail;//边的终点下标
int power;//边的权值
} Edge;

static void init_kruskal(Graph * graph, Graph * kruskal_tree);
static void my_sort(Edge * arr, int size);
void kruskal(Graph * graph, Graph * kruskal_tree)
{
int visited[graph->vertexs];
Edge edge[graph
->brim];
int i, j, k;
int v1, v2, vs1, vs2;

for ( i = 0; i < graph->vertexs; i++ )
visited[i]
= i;

k
= 0;
for ( i = 0; i < graph->vertexs; i++ )
{
for ( j = i + 1; j < graph->vertexs; j++ )
{
if ( graph->arcs[i][j] != MAX_VALUE )
{
edge[k].head
= i;
edge[k].tail
= j;
edge[k].power
= graph->arcs[i][j];
k
++;
}
}
}

init_kruskal(graph, kruskal_tree);
my_sort(edge, graph
->brim);

for ( i = 0; i < graph->brim; i++ )
{
v1
= edge[i].head;
v2
= edge[i].tail;
vs1
= visited[v1];
vs2
= visited[v2];
if ( vs1 != vs2 )
{
kruskal_tree
->arcs[v1][v2] = graph->arcs[v1][v2];
for ( j = 0; j < graph->vertexs; j++ )
{
if ( visited[j] == vs2 )
visited[j]
= vs1;
}
}
}
}

static void init_kruskal(Graph * graph, Graph * kruskal_tree)
{
int i, j;

kruskal_tree
->vertexs = graph->vertexs;
kruskal_tree
->brim = graph->brim;

for ( i = 0; i < graph->vertexs; i++ )
kruskal_tree
->vertex[i] = graph->vertex[i];

for ( i = 0; i < graph->vertexs; i++ )
for ( j = 0; j < graph->vertexs; j++ )
kruskal_tree
->arcs[i][j] = MAX_VALUE;
}

static void my_sort(Edge * arr, int size)
{
int i, j;
Edge tmp;

for ( i = 0; i < size - 1; i++ )
{
for ( j = i + 1; j < size; j++ )
{
if ( arr[i].power > arr[j].power )
{
tmp.head
= arr[i].head;
tmp.tail
= arr[i].tail;
tmp.power
= arr[i].power;

arr[i].head
= arr[j].head;
arr[i].tail
= arr[j].tail;
arr[i].power
= arr[j].power;

arr[j].head
= tmp.head;
arr[j].tail
= tmp.tail;
arr[j].power
= tmp.power;
}
}
}
}

int main(void)
{
Graph graph;
Graph prim_tree;
Graph kruskal_tree;

g_create(
&graph);
g_printMatrix(
&graph);
// printf("\n");
// g_depth_first_search(&graph);
// g_breadth_first_search(&graph);
//
// Prim(&graph, &prim_tree);
// g_printMatrix(&prim_tree);
// g_depth_first_search(&prim_tree);
// g_breadth_first_search(&prim_tree);

kruskal(
&graph, &kruskal_tree);
g_printMatrix(
&kruskal_tree);

return 0;
}

aqueue.h

#ifndef _QUEUE_H
#define _QUEUE_H

#define MAXSIZE 10

typedef
struct queue
{
int * arr;
int front;
int rear;
} Queue;

void q_init(Queue * queue);//初始化
void q_push(Queue * queue, const int data);//入队
void q_pop(Queue * queue);//出队
bool q_empty(Queue * queue);//为空
bool q_full(Queue * queue);//为满
int q_size(Queue * queue);//队大小
int q_front(Queue * queue);//队头元素
int q_back(Queue * queue);//队尾元素
void q_destroy(Queue * queue);//销毁

#endif //_QUEUE_h

aqueue.c

#include <stdio.h>
#include
<stdlib.h>
#include
<assert.h>
#include
<stdbool.h>

#include
"aqueue.h"

void q_init(Queue * queue)
{
queue
->arr = (int *)malloc( sizeof(int) * MAXSIZE );//初始化数组
assert(queue->arr != NULL);
queue
->front = 0;
queue
->rear = 0;
}

void q_push(Queue * queue, const int data)
{
if ( q_full(queue) )
return;
queue
->arr[queue->rear++] = data;//入队,队尾+1
queue->rear = queue->rear % MAXSIZE;//如果队尾
}

void q_pop(Queue * queue)
{
if ( q_empty(queue) )
return;
queue
->front = ++queue->front % MAXSIZE;//front+1,对MAXSIZE取余
}

bool q_empty(Queue * queue)
{
return queue->front == queue->rear;
}

bool q_full(Queue * queue)
{
return queue->front == (queue->rear + 1) % MAXSIZE;
}

int q_size(Queue * queue)
{
return (queue->rear - queue->front) % MAXSIZE;
}

int q_front(Queue * queue)
{
assert(
!q_empty(queue) );
return queue->arr[queue->front];
}

int q_back(Queue * queue)
{
assert(
!q_empty(queue) );
return queue->arr[queue->rear - 1];
}

void q_destroy(Queue * queue)
{
free(queue->arr);
}