常用算法设计方法(六) ---贪婪法

时间:2022-10-23 09:49:57

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
   例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为 银行 对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。
【问题】   装箱问题
问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。
   若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{   输入箱子的容积;
   输入物品种数n;
   按体积从大到小顺序,输入各物品的体积;
   预置已用箱子链为空;
   预置已用箱子计数器box_count为0;
   for (i=0;i<n;i++)
   {   从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;
      if (已用箱子都不能再放物品i)
      {   另用一个箱子,并将物品i放入该箱子;
         box_count++;
      }
      else
         将物品i放入箱子j;
   }
}
   上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。
   若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。
【程序】
# include   <stdio.h>
# include   <stdlib.h>
typedef  struct  ele
{   int  vno;
   struct  ele  *link;
}   ELE;
typedef  struct  hnode
{   int  remainder;
   ELE  *head;
   Struct  hnode  *next;
}   HNODE;

void  main()
{   int  n, i, box_count, box_volume, *a;
   HNODE  *box_h,  *box_t,  *j;
   ELE     *p,  *q;
   Printf(“输入箱子容积/n”);
   Scanf(“%d”,&box_volume);
   Printf(“输入物品种数/n”);
   Scanf(“%d”,&n);
   A=(int *)malloc(sizeof(int)*n);
   Printf(“请按体积从大到小顺序输入各物品的体积:”);
   For (i=0;i<n;i++)   scanf(“%d”,a+i);
   Box_h=box_t=NULL;
   Box_count=0;
   For (i=0;i<n;i++)
   {   p=(ELE *)malloc(sizeof(ELE));
      p->vno=i;
      for (j=box_h;j!=NULL;j=j->next)
         if (j->remainder>=a)   break;
      if (j==NULL)
      {   j=(HNODE *)malloc(sizeof(HNODE));
         j->remainder=box_volume-a;
         j->head=NULL;
         if (box_h==NULL)      box_h=box_t=j;
         else   box_t=boix_t->next=j;
         j->next=NULL;
         box_count++;
      }
      else   j->remainder-=a;
      for (q=j->next;q!=NULL&&q->link!=NULL;q=q->link);
      if (q==NULL)
      {   p->link=j->head;
         j->head=p;
      }
      else
      {   p->link=NULL;
         q->link=p;
      }
   }
   printf(“共使用了%d只箱子”,box_count);
   printf(“各箱子装物品情况如下:”);
   for (j=box_h,i=1;j!=NULL;j=j->next,i++)
   {   printf(“第%2d只箱子,还剩余容积%4d,所装物品有;/n”,I,j->remainder);
      for (p=j->head;p!=NULL;p=p->link)
         printf(“%4d”,p->vno+1);
      printf(“/n”);
   }
}

【问题】   马的遍历
问题描述:在8×8方格的棋盘上,从任意指定的方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
   马在某个方格,可以在一步内到达的不同位置最多有8个,如图所示。如用二维数组board[ ][ ]表示棋盘,其元素记录马经过该位置时的步骤号。另对马的8种可能走法(称为着法)设定一个顺序,如当前位置在棋盘的(i,j)方格,下一个可能的位置依次为(i+2,j+1)、(i+1,j+2)、(i-1,j+2)、(i-2,j+1)、(i-2,j-1)、(i-1,j-2)、(i+1,j-2)、(i+2,j-1),实际可以走的位置尽限于还未走过的和不越出边界的那些位置。为便于程序的同意处理,可以引入两个数组,分别存储各种可能走法对当前位置的纵横增量。
   4      3   
5            2
      马      
6            1
   7      0   

   对于本题,一般可以采用回溯法,这里采用Warnsdoff策略求解,这也是一种贪婪法,其选择下一出口的贪婪标准是在那些允许走的位置中,选择出口最少的那个位置。如马的当前位置(i,j)只有三个出口,他们是位置(i+2,j+1)、(i-2,j+1)和(i-1,j-2),如分别走到这些位置,这三个位置又分别会有不同的出口,假定这三个位置的出口个数分别为4、2、3,则程序就选择让马走向(i-2,j+1)位置。
   由于程序采用的是一种贪婪法,整个找解过程是一直向前,没有回溯,所以能非常快地找到解。但是,对于某些开始位置,实际上有解,而该算法不能找到解。对于找不到解的情况,程序只要改变8种可能出口的选择顺序,就能找到解。改变出口选择顺序,就是改变有相同出口时的选择标准。以下程序考虑到这种情况,引入变量start,用于控制8种可能着法的选择顺序。开始时为0,当不能找到解时,就让start增1,重新找解。细节以下程序。
【程序】
# include   <stdio.h>
int delta_i[ ]={2,1,-1,-2,-2,-1,1,2};
int delta_j[ ]={1,2,2,1,-1,-2,-2,-1};
int board[8][8];
int exitn(int i,int j,int s,int a[ ])
{   int i1,j1,k,count;
   for (count=k=0;k<8;k++)
   {   i1=i+delta_i[(s+k)%8];
      j1=i+delta_j[(s+k)%8];
      if (i1>=0&&i1<8&&j1>=0&&j1<8&&board[I1][j1]==0)
         a[count++]=(s+k)%8;
   }
   return count;
}

int next(int i,int j,int s)
{   int m,k,mm,min,a[8],b[8],temp;
   m=exitn(i,j,s,a);
   if (m==0)      return –1;
   for (min=9,k=0;k<m;k++)
   {   temp=exitn(I+delta_i[a[k]],j+delta_j[a[k]],s,b);
      if (temp<min)
      {   min=temp;
kk=a[k];
      }
   }
   return  kk;
}

void main()
{   int sx,sy,i,j,step,no,start;
   for (sx=0;sx<8;sx++)
   for (sy=0;sy<8;sy++)
   {   start=0;
      do {
         for (i=0;i<8;i++)
            for (j=0;j<8;j++)
               board [j]=0;
         board[sx][sy]=1;
         I=sx;   j=sy;
         For (step=2;step<64;step++)
         {   if ((no=next(i,j,start))==-1)   break;
            I+=delta_i[no];
            j+=delta_j[no];
            board[j]=step;
         }
         if (step>64)   break;
         start++;
      } while(step<=64)
      for (i=0;i<8;i++)
      {   for (j=0;j<8;j++)
            printf(“%4d”,board[j]);
         printf(“/n/n”);
      }
      scanf(“%*c”);
   }
}