POJ 1077 Eight 八数码问题 [康托展开 + BFS]
对于八数码问题,可能问题的关键不是BFS,而是对状态的标记。八数码的状态恰好是一个全排列,那么对于全排列,康托展开就是一个完美的哈希。
康托展开:X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! ,其中a[i]为当前未出现的元素中是排在第几个(从0开始)。这就是康托展开。
其实康托展开就是利用全排列的性质从高位向低位求第N大数或者第N小数。
#include <map>
#include <vector>
#include <queue>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define FIN freopen("input.txt","r",stdin)
#define FOUT freopen("output.txt","w",stdout)
#define CASE(T) for(scanf("%d",&T);T--;)
#define fst first
#define snd second
#define lson l, mid, rt << 1
#define rson mid+1, r, rt << 1 | 1
typedef __int64 LL;
//typedef long long LL;
typedef pair<int, int> PII;
const int MAXN = 9;
const int dir[] = { -3, -1, 1, 3};
const char H[] = "ulrd";
char src[MAXN], dest[MAXN];
const int MAXM = 1e6;
struct Node {
int xpos, step;
char grid[MAXN];
string res;
int contorV;
} cur, rear;
int T, R, C;
char str[MAXN];
queue<Node> Q;
int fact[10];
bool vis[MAXM];
void init() {
fact[0] = 1;
for(int i = 1; i < 10; i ++) {
fact[i] = fact[i - 1] * i;
}
}
/// contor展开求第N小数
int contor(const char s[]) {
int ret = 0, temp;
for(int i = 0; i < 9; i ++) {
temp = 0;
for(int j = i + 1; j < 9; j ++) {
if(s[i] > s[j]) temp ++;
}
ret += temp * fact[9 - i - 1];
}
return ret + 1;
}
const int contor_dest = contor("123456789");
inline bool outRange(int x) {
return x < 0 || x >= 9;
}
/// 除去不是从相邻位置过来的情况
inline bool check(int x1, int y1, int x2, int y2) {
return ((x1 == x2) && abs(y1 - y2) == 1) || ((y1 == y2) && abs(x1 - x2) == 1);
}
int bfs() {
memset(vis, false, sizeof(vis));
int ret = -1;
vis[cur.contorV = contor(cur.grid)] = true;
cur.step = 0;
Q.push(cur);
while(!Q.empty()) {
cur = Q.front();
Q.pop();
if(~ret) continue;
if(cur.contorV == contor_dest) {
ret = cur.step;
cout << cur.res << endl;
continue;
}
int x1, x2, y1, y2;
x1 = cur.xpos / 3;
y1 = cur.xpos % 3;
for(int i = 0; i < 4; i++) {
rear.xpos = cur.xpos + dir[i];
x2 = rear.xpos / 3;
y2 = rear.xpos % 3;
if(outRange(rear.xpos)) continue;
strcpy(rear.grid, cur.grid);
swap(rear.grid[rear.xpos], rear.grid[cur.xpos]);
if(!check(x1, y1, x2, y2)) continue;
int val = rear.contorV = contor(rear.grid);
if(vis[val]) continue;
vis[val] = true;
rear.step = cur.step + 1;
rear.res = cur.res + H[i];
Q.push(rear);
}
}
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif // ONLINE_JUDGE
init();
while(~scanf("%s", str)) {
cur.res = "";
if(str[0] == 'x') {
cur.xpos = 0;
str[0] = '9';
}
cur.grid[0] = str[0];
for(int i = 1; i < 9; i++) {
scanf("%s", str);
if(str[0] == 'x') {
cur.xpos = i;
str[0] = '9';
}
cur.grid[i] = str[0];
}
int ret = bfs();
if(ret == -1) puts("unsolvable");
}
return 0;
}