今天源码共读话题是快速排序,可是我觉得原文说的不够清晰,就在网上找了这篇博文,写的很清楚,小白都能快速掌握快排,在这里转载一下,非常感谢原博主的分享http://blog.csdn.net/morewindows/article/details/6684558
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想----分治法也确实实用,因此很多软件公司的笔试面试,包括像腾讯,微软等知名IT公司都喜欢考这个,还有大大小的程序方面的考试如软考,考研中也常常出现快速排序的身影。
总的说来,要直接默写出快速排序还是有一定难度的,因为本人就自己的理解对快速排序作了下白话解释,希望对大家理解有帮助,达到快速排序,快速搞定。
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
以一个数组作为示例,取区间第一个数为基准数。
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
72 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
48 |
85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
88 |
85 |
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
42 |
60 |
72 |
83 |
73 |
88 |
85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
照着这个总结很容易实现挖坑填数的代码:
int AdjustArray(int s[], int l, int r) //返回调整后基准数的位置 { int i = l, j = r; int x = s[l]; //s[l]即s[i]就是第一个坑 while (i < j) { // 从右向左找小于x的数来填s[i] while(i < j && s[j] >= x) j--; if(i < j) { s[i] = s[j]; //将s[j]填到s[i]中,s[j]就形成了一个新的坑 i++; } // 从左向右找大于或等于x的数来填s[j] while(i < j && s[i] < x) i++; if(i < j) { s[j] = s[i]; //将s[i]填到s[j]中,s[i]就形成了一个新的坑 j--; } } //退出时,i等于j。将x填到这个坑中。 s[i] = x; return i; }再写分治法的代码:
void quick_sort1(int s[], int l, int r) { if (l < r) { int i = AdjustArray(s, l, r);//先成挖坑填数法调整s[] quick_sort1(s, l, i - 1); // 递归调用 quick_sort1(s, i + 1, r); } }这样的代码显然不够简洁,对其组合整理下:
//快速排序 void quick_sort(int s[], int l, int r) { if (l < r) { //Swap(s[l], s[(l + r) / 2]); //将中间的这个数和第一个数交换 参见注1 int i = l, j = r, x = s[l]; while (i < j) { while(i < j && s[j] >= x) // 从右向左找第一个小于x的数 j--; if(i < j) s[i++] = s[j]; while(i < j && s[i] < x) // 从左向右找第一个大于等于x的数 i++; if(i < j) s[j--] = s[i]; } s[i] = x; quick_sort(s, l, i - 1); // 递归调用 quick_sort(s, i + 1, r); } }
快速排序还有很多改进版本,如随机选择基准数,区间内数据较少时直接用另的方法排序以减小递归深度。有兴趣的筒子可以再深入的研究下。
注1,有的书上是以中间的数作为基准数的,要实现这个方便非常方便,直接将中间的数和第一个数进行交换就可以了。
--------------------------------------复杂度分析---------------------------------------
时间复杂度
最优情况下时间复杂度
令:n = n/2 = 2 { 2 T[n/4] + (n/2) } + n ----------------第二次递归
= 2^2 T[ n/ (2^2) ] + 2n
令:n = n/(2^2) = 2^2 { 2 T[n/ (2^3) ] + n/(2^2)} + 2n ----------------第三次递归
= 2^3 T[ n/ (2^3) ] + 3n
......................................................................................
令:n = n/( 2^(m-1) ) = 2^m T[1] + mn ----------------第m次递归(m次后结束)
当最后平分的不能再平分时,也就是说把公式一直往下跌倒,到最后得到T[1]时,说明这个公式已经迭代完了(T[1]是常量了)。
得到:T[n/ (2^m) ] = T[1] ===>> n = 2^m ====>> m = logn;
T[n] = 2^m T[1] + mn ;其中m = logn;
T[n] = 2^(logn) T[1] + nlogn = n T[1] + nlogn = n + nlogn ;其中n为元素个数
又因为当n >= 2时:nlogn >= n (也就是logn > 1),所以取后面的 nlogn;
综上所述:快速排序最优的情况下时间复杂度为:O( nlogn )
最差情况下时间复杂度
最差的情况就是每一次取到的元素就是数组中最小/最大的,这种情况其实就是冒泡排序了(每一次都排好一个元素的顺序)
这种情况时间复杂度就好计算了,就是冒泡排序的时间复杂度:T[n] = n * (n-1) = n^2 + n;
综上所述:快速排序最差的情况下时间复杂度为:O( n^2 )