Relatively Prime Powers
Consider some positive integer xx. Its prime factorization will be of form x=2k1⋅3k2⋅5k3⋅…x=2k1⋅3k2⋅5k3⋅…
Let's call xx elegant if the greatest common divisor of the sequence k1,k2,…k1,k2,… is equal to 11. For example, numbers 5=515=51, 12=22⋅312=22⋅3, 72=23⋅3272=23⋅32 are elegant and numbers 8=238=23 (GCD=3GCD=3), 2500=22⋅542500=22⋅54 (GCD=2GCD=2) are not.
Count the number of elegant integers from 22 to nn.
Each testcase contains several values of nn, for each of them you are required to solve the problem separately.
Input
The first line contains a single integer TT (1≤T≤1051≤T≤105) — the number of values of nn in the testcase.
Each of the next TT lines contains a single integer nini (2≤ni≤10182≤ni≤1018).
Output
Print TT lines — the ii-th line should contain the number of elegant numbers from 22to nini.
Example
Input
4427210
Output
21616
Note
Here is the list of non-elegant numbers up to 1010:
- 4=22,GCD=24=22,GCD=2;
- 8=23,GCD=38=23,GCD=3;
- 9=32,GCD=29=32,GCD=2.
The rest have GCD=1GCD=1.
题意:
给你一个大于等于2的整数N
让你求2~N 中有多少个整数x,
唯一分解后质因子的幂次分别是e1,e2,e3, 时 gcd(e1,e2,e3)=1
思路:
正难则反,一共有N-1个数,我们只需要减去那些gcd不为1的即可,
我们可以分别枚举gcd为2,3,4,5.,,,, 等等
根据容斥原理,gcd 为i时,他对答案的贡献即为 mu[i]*(n^(1/i) -1 ) mu是莫比乌斯函数。
至于系数为什么恰好是莫比乌斯函数,可以先学这篇博客感受一下:
https://www.cnblogs.com/qieqiemin/p/11537681.html
那么我们来看n^(1/i) -1 是2~n中,质因子分解幂次都为i的数的个数。
即n开i次方-1,先去的1就是就是一个数开任何次方都>=1,数字1被算进去了,需要减去。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
long long gen(long long n, long long k)
{
long long t = powl(n, 1. / k) - 0.5;
return t + (powl(t + 1, k) - 0.5 <= n);
}
#define N maxn
bool vis[N];
long long prim[N], mu[N], sum[N], cnt;
void get_mu(long long n)
{
mu[1] = 1;
for (long long i = 2; i <= n; i++) {
if (!vis[i]) {mu[i] = -1; prim[++cnt] = i;}
for (long long j = 1; j <= cnt && i * prim[j] <= n; j++) {
vis[i * prim[j]] = 1;
if (i % prim[j] == 0) { break; }
else { mu[i * prim[j]] = -mu[i]; }
}
}
for (long long i = 1; i <= n; i++) { sum[i] = sum[i - 1] + mu[i]; }
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
int t;
get_mu(maxn - 1);
du1(t);
while (t--) {
ll n;
scanf("%lld", &n);
ll ans = n - 1;
for (ll i = 2ll; i <= 64ll; ++i) {
ans += mu[i] * (gen(n, i) - 1ll);
}
printf("%lld\n", ans );
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)的更多相关文章
-
HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法
题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...
-
Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)
题意: 求1 - s 中 找出k个数 使它们的gcd > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数 求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...
-
BZOJ 2440 莫比乌斯函数+容斥+二分
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5473 Solved: 2679[Submit][Sta ...
-
F - Tmutarakan Exams URAL - 1091 -莫比乌斯函数-容斥 or DP计数
F - Tmutarakan Exams 题意 : 从 < = S 的 数 中 选 出 K 个 不 同 的 数 并 且 gcd > 1 .求方案数. 思路 :记 录 一 下 每 个 数 的 ...
-
C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
-
完全平方数 HYSBZ - 2440 (莫比乌斯函数容斥)
完全平方数 HYSBZ - 2440 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他 ...
-
HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
-
bzoj2440 完全平方数 莫比乌斯值+容斥+二分
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...
-
hdu1695(莫比乌斯)或欧拉函数+容斥
题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...
随机推荐
-
感知机学习算法 python实现
参考李航<统计学习方法> 一开始的感知机章节,看着不太复杂就实现一下... """ 感知机学习算法的原始形式 例2.1 """ ...
-
Map中如何把没有定义操作符<;的类作为key
Map中如何把没有定义操作符<的类作为key 其实,为了实现快速查找,map内部本身就是按序存储的(比如红黑树).在我们插入<key, value>键值对时,就会按照key的大小顺序 ...
-
发布自己第一个npm 组件包(基于Vue的文字跑马灯组件)
一.前言 总结下最近工作上在移动端实现的一个跑马灯效果,最终效果如下: 印象中好像HTML标签的'marquee'的直接可以实现这个效果,不过 HTML标准中已经废弃了'marquee'标签 既然HT ...
-
node作为中间层 —>; 跨域请求java后台接口(使用http-proxy-middleware中间件)
情景:利用node的express 作为中间层,跨域调取java后台接口,由于java接口对session有判断,因此每次请求都必须在req的headers中需要带上cookie,否则接口报500错误 ...
-
ElasicSearch(4) 与jest结合
https://spring.io/projects/spring-data-elasticsearch https://docs.spring.io/spring-data/elasticsearc ...
-
python flask大型项目目录
Hello World 作者背景 应用程序简介 要求 安装 Flask 在 Flask 中的 “Hello, World” 下一步? 模板 回顾 为什么我们需要模板 模板从天而降 模板中控制语句 模板 ...
-
Mybatis二(高级部分)
1.输入映射和输出映射 a) 输入参数映射 b) 返回值映射 2.动态sql a) If标签 b) Where标签 c) Sql片 ...
-
react ES5 与ES6的写法
ES5var React = require('react'); var ReactDOM = require('react-dom'); // 定义组件 var HelloMessage = Rea ...
-
[译]window.onerror事件
本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...
-
sass 的学习
导入scss @import "../../sass/variables.scss"; @import "../../sass/helper.scss"; @m ...