上下界网络流

时间:2022-06-17 09:41:55

上下界网络流问题

来自:http://www.cnblogs.com/kane0526/archive/2013/04/05/3001108.html
并致敬!

此类问题可以分为三小类问题:

一、无源汇有上下界最大流

二、有源汇有上下界最大流

三、有源汇有上下界最小流


1、无源汇有上下界最大流

题目链接: sgu194 Reactor Cooling

题目大意:给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质。并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li。

解题思路: O(-1)。

建图模型: 以前写的最大流默认的下界为0,而这里的下界却不为0,所以我们要进行再构造让每条边的下界为0,这样做是为了方便处理。对于每根管子有一个上界容量up和一个下界容量low,我们让这根管子的容量下界变为0,上界为up-low。可是这样做了的话流量就不守恒了,为了再次满足流量守恒,即每个节点”入流=出流”,我们增设一个超级源点st和一个超级终点sd。我们开设一个数组du[]来记录每个节点的流量情况。

du[i]=in[i](i节点所有入流下界之和)-out[i](i节点所有出流下界之和)。

当du[i]大于0的时候,st到i连一条流量为du[i]的边。

当du[i]小于0的时候,i到sd连一条流量为-du[i]的边。

最后对(st,sd)求一次最大流即可,当所有附加边全部满流时(即maxflow==所有du[]>0之和),有可行解。


2、有源汇有上下界的最大流

题目链接: zoj3229 Shoot the Bullet

题目大意:一个屌丝给m个女神拍照,计划拍照n天,每一天屌丝最多个C个女神拍照,每天拍照数不能超过D张,而且给每个女神i拍照有数量限制[Li,Ri],对于每个女神n天的拍照总和不能超过Gi,如果有解求屌丝最多能拍多少张照,并求每天给对应女神拍多少张照;否则输出-1。

解题思路:增设一源点st,汇点sd,st到第i天连一条上界为Di下界为0的边,每个女神到汇点连一条下界为Gi上界为oo的边,对于每一天,当天到第i个女孩连一条[Li,Ri]的边。

建图模型:源点s,终点d。超级源点ss,超级终点dd。首先判断是否存在满足所有边上下界的可行流,方法可以转化成无源汇有上下界的可行流问题。怎么转换呢?

增设一条从d到s没有下界容量为无穷的边,那么原图就变成了一个无源汇的循环流图。接下来的事情一样,超级源点ss连i(du[i]>0),i连超级汇点(du[i]<0),

对(ss,dd)进行一次最大流,当maxflow等于所有(du[]>0)之和时,有可行流,否则没有。

当有可行流时,删除超级源点ss和超级终点dd,再对(s,d)进行一次最大流,此时得到的maxflow则为题目的解。为什么呢?因为第一次maxflow()只是求得所有满足下界的流量,而残留网络(s,d)路上还有许多*流(没有和超级源点和超级汇点连接的边)没有流满,所有最终得到的maxflow=(第一次流满下界的流+第二次能流通的*流)。


3、有源汇有上下界的最小流

题目链接: sgu176 Flow construction

题目大意:有一个类似于工业加工生产的机器,起点为1终点为n,中间生产环节有货物加工数量限制,输出u v z c, 当c等于1时表示这个加工的环节必须对纽带上的货物全部加工(即上下界都为z),c等于0表示加工没有上界限制,下界为0,求节点1(起点)最少需要投放多少货物才能传送带正常工作。

解题思路:

1、du[i]表示i节点的入流之和与出流之和的差。

2、增设超级源点st和超级汇点sd,连(st,du[i](为正)),(-du[i](为负),sd)。 ///增设超级源点和超级汇点,因为网络中规定不能有弧指向st,也不能有流量流出sd

3、做一次maxflow()。

4、源点(Sd)和起点(St)连一条容量为oo的边。

5、再做一次maxflow()。

6、当且仅当所有附加弧满载时有可行流,最后答案为flow[(Sd->St)^1],St到Sd最大流就是Sd到St最小流。

建图模型:同样转换成先求无源汇有上下界的可行流,先添加一条d到s容量为无穷的边,这里求最小流很容易让人产生歧路,为什么呢?当所有边满足下界条件并且能量守恒时,这时候求得的最大流不就是最小流么。这样是错误了,我开始了在这揣测了良久。

下面来看个例子:

上下界网络流

这样求得的最小流为200,而实际的可行最小流解只需100。

问题出在原图中存在环(循环流),而我们没有利用,导致流增大了。

解决方法:先不增加d->s容量为无穷的边,进行一次maxflow(),如果还没有满流,则加一条(d,s)容量为无穷的边,再进行一次maxflow(),当且仅当所有附加弧满载时,有可行解,解为flow[(d->s)^1](即d到s的后悔边权值)。