最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 19606 Accepted Submission(s): 5837
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
Source
Recommend
notonlysuccess | We have carefully selected several similar problems for you:
1142
1548
1598
1596
1162
代码:
#include<cstdio> #include<cstring> using namespace std; const int maxn=1e3; struct tnode{ int point; int distance; int price; tnode *next; }*h[maxn+5]; int n,s,e,dist[maxn+5],cost[maxn+5]; bool used[maxn+5]; void add(int a,int b,int d,int p) { tnode *q=new tnode; (*q).point=b; (*q).distance=d; (*q).price=p; (*q).next=h[a],h[a]=q; } void dijkstra() { memset(dist,10,sizeof(dist)),dist[s]=0; memset(cost,10,sizeof(cost)),cost[s]=0; memset(used,0,sizeof(used)); int i,j,k,x;tnode *p; for(i=1;i<n;i++) { for(k=0,j=1;j<=n;j++) { if(used[j] || dist[j]>dist[k])continue; if(dist[j]<dist[k])goto d1; if(cost[j]<cost[k])d1:k=j; } if(k==e)return; used[k]=1; for(p=h[k];p;p=(*p).next) { x=dist[k]+(*p).distance; if(dist[(*p).point]<x)continue; if(dist[(*p).point]>x) { dist[(*p).point]=x; cost[(*p).point]=cost[k]+(*p).price; continue; } x=cost[k]+(*p).price; if(cost[(*p).point]>x)cost[(*p).point]=x; } } } int main() { //freopen("1.in","r",stdin); int m,i,a,b,d,p; while(scanf("%d%d",&n,&m),n) { for(i=1;i<=n;i++)h[i]=NULL; while(m--) { scanf("%d%d%d%d",&a,&b,&d,&p); add(a,b,d,p),add(b,a,d,p); } scanf("%d%d",&s,&e),dijkstra(); printf("%d %d\n",dist[e],cost[e]); } return 0; }