[codeforces 200 E Tractor College]枚举,扩展欧几里得,三分

时间:2024-06-11 11:34:44

题目出自 Codeforces Round #126 (Div. 2) 的E。

题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz=s,使得f(x,y,z)=|ax-by|+|by-cz|最小

思路:枚举z,得到一个方程ax+by=s-cz,用扩展欧几里得求出这个方程的一个解,然后三分通解的整系数,求出最小f值。至于为什么可以三分画画图就清楚了,两个绝对值函数叠加在一起最多只有三种状态(第一维表示临界点较小的那个绝对值函数):(降,降),(升,降),(升,升),无论两个函数哪个变化快,最终趋势都是:降然后升(由于临界点的情况不同,可能变成了单调的,但并不影响我们用三分求解)。

思来想去,决定搞一个三分的框架来避免头疼的临界问题(这是求最小值,求最大值时只需把<=换成>=即可,另外函数值在一段范围内不发生变化可能导致结果出错):

1
2
3
4
5
6
7
int L = ..., R = ...;
while (L < R) {
    int M1 = L + (R - L) / 3, M2 = R - (R - L) / 3;
    if (F(M1) <= F(M2)) R = M2 - 1;
    else L = M1 + 1; 
solve(L);

出while循环后 L=R=目标解

下面是题目的源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
#include <map>                                                                      //
#include <cmath>                                                                    //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define fillchar(a, x) memset(a, x, sizeof(a))                                      //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
#ifndef ONLINE_JUDGE                                                                //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
#endif // ONLINE_JUDGE                                                              //
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}        //
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}        //
template<typename T>                                                                //
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
template<typename T>                                                                //
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                    //
const double PI = acos(-1.0);                                                       //
const int INF = 1e9 + 7;                                                            //
                                                                                    //
/* -------------------------------------------------------------------------------- */
ll x, y, z, a, b, c, a0, b0;
ll gcd(ll a, ll b) {
    return b? gcd(b, a % b) : a;
}
void gcd(ll a, ll b, ll &d, ll &x, ll &y) {
    if (!b) {
        d = a; x = 1; y = 0;
    }
    else {
        gcd(b, a % b, d, y, x);
        y -= x * (a / b);
    }
}
ll f(ll k) {
    ll xx = x + k * b0, yy = y - k * a0;
    return abs(xx * a - yy * b) + abs(yy * b - z * c);
}
bool chk(ll k1, ll k2) {
    if (x + k1 * b0 < 0) return false;
    if (x + k1 * b0 > z) return true;
    if (y - k1 * a0 < 0) return true;
    if (y - k1 * a0 > z) return false;
    if (x + k2 * b0 < 0) return false;
    if (x + k2 * b0 > z) return true;
    if (y - k2 * a0 < 0) return true;
    if (y - k2 * a0 > z) return false;
    if (x + k1 * b0 > y - k1 * a0) return true;
    if (x + k2 * b0 > y - k2 * a0) return true;
    return f(k1) <= f(k2);
}
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int n, s;
    cin >> n >> s;
    int cnt[3] = {};
    for (int i = 0; i < n; i ++) {
        int x;
        scanf("%d", &x);
        cnt[x - 3] ++;
    }
    a = cnt[0], b = cnt[1], c = cnt[2];
    ll ans = INF, ix, iy, iz;
    for (z = 1; z * c <= s; z ++) {
        ll g;
        gcd(a, b, g, x, y);
        if ((s - z * c) % g) continue;
        ll K = (s - z * c) / g;
        x *= K;
        y *= K;
        a0 = a / g;
        b0 = b / g;
        ll L = -INF, R = INF;
        while (L < R) {
            ll M1 = L + (R - L) / 3, M2 = R - (R - L) / 3;
            if (chk(M1, M2)) R = M2 - 1;
            else L = M1 + 1;
        }
        ll xx = x + L * b0, yy = y - L * a0;
        if (0 <= xx && xx <= yy && yy <= z) {
            if (umin(ans, f(L))) {
                ix = xx;
                iy = yy;
                iz = z;
            }
        }
    }
    if (ans < INF) cout << ix << " " << iy << " " << iz << endl;
    else puts("-1");
    return 0;
}
/* ******************************************************************************** */