描述
小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~
这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?
于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。
每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。
对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。
输出
对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。
样例输入
5 10
4 10
0 2
1 6
5 9
3 4
样例输出
5 题解:离散线段树好了,标记是要down的!!!
要注意的是[1,2],[2,3],[3,4]是算3张海报,因为海报实际上是一个连续的区间,所以下标为i对应的是[i,i+1]的区间。所以对于区间[a,b],线段树更新的节点范围是[a,b-1]。还是相当关键的!
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
#define CH for(int d=0;d<2;d++)if(ch[d])
#define lson x->ch[0],L,M
#define rson x->ch[1],M+1,R
using namespace std;
const int maxn=+,maxnode=+,inf=-1u>>;
struct node{
node*ch[];int siz;int t;
void addt(int a){t=a;return;}
void down(){if(t){CH{ch[d]->addt(t);}t=;}return;}
}seg[maxnode],*nodecnt=seg,*root;
struct data{int L,R;}d[maxn];
int n,num[maxn],A[maxn],ql,qr,cv,pos;bool ans[maxn];
void build(node*&x=root,int L=,int R=n<<){
x=nodecnt++;int M=L+R>>;if(L==R)x->t=;
else build(lson),build(rson);x->siz=R-L+;return;
}
void update(node*&x=root,int L=,int R=n<<){
if(ql<=L&&R<=qr)x->addt(cv);
else{int M=L+R>>;x->down();
if(ql<=M)update(lson);
if(qr>M)update(rson);
}return;
}
void query(node*x=root,int L=,int R=n<<){
if(!x)return;
if(x->t)ans[x->t]=true;
else{int M=L+R>>;
query(lson);query(rson);
}return;
}
inline int read(){
int x=,sig=;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=;
for(;isdigit(ch);ch=getchar())x=*x+ch-'';
return sig?x:-x;
}
inline void write(int x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=,buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
n=read();read();build();int x,y;
for(int i=;i<=n;i++)x=num[i<<]=read(),y=num[(i<<)|]=read(),d[i]=(data){x,y};
sort(num+,num+n*+);int L=unique(num+,num+n*+)-num;
for(int i=;i<=n;i++){
ql=upper_bound(num+,num+L,d[i].L)-num-;
qr=upper_bound(num+,num+L,d[i].R)-num-;//attention
cv=i;update();
}query();int res=;
for(int i=;i<=(n<<);i++)if(ans[i])res++;write(res);
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}
hiho #1079 : 离散化的更多相关文章
-
poj 2528 Mayor&#39;s posters 线段树+离散化 || hihocode #1079 离散化
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
-
hihoCoder - 1079 - 离散化 (线段树 + 离散化)
#1079 : 离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描写叙述 小Hi和小Ho在回国之后,又一次过起了朝7晚5的学生生活.当然了.他们还是在一直学习着各种算法 ...
-
Hihocoder 1079 离散化
离散化这里有很多种方式 利用结构体记录最初的索引在按位置排序再记录排名即为离散的位置再按索引排回来 或者用数组记录排序后直接对原位置二分直接去找离散应在的位置 或者对数组排序后直接map 3 20 1 ...
-
hihoCoder #1079 : 离散化 (线段树,数据离散化)
题意:有一块宣传栏,高一定,给出长度,再给出多张海报的张贴位置,问还能见到几张海报(哪怕有一点被看到)?假设海报的高于宣传栏同高. 思路:问题转成“给出x轴上长为L的一条线段,再用n条线段进行覆盖上去 ...
-
hiho一下21周 线段树的区间修改 离散化
离散化 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho ...
-
hihoCoder:#1079(线段树+离散化)
题目大意:给n个区间,有的区间可能覆盖掉其他区间,问没有完全被其他区间覆盖的区间有几个?区间依次给出,如果有两个区间完全一样,则视为后面的覆盖前面的. 题目分析:区间可能很长,所以要将其离散化.但离散 ...
-
hihoCoder#1079(线段树+坐标离散化)
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~ 这天小Hi和小Ho所在的学 ...
-
hiho 分冶专题
hiho的每周一题都不会很难,基本上就是一些很裸和经典的问题,这一次写了几道分冶专题的题,做个总结. 分冶最简单的就是二分,二分说简单,很简单,不过7,8行代码,不过也常常写挂,写成无限循环. 直接看 ...
-
hihocoder-1079题解(线段树+离散化)
一.题目链接 http://hihocoder.com/problemset/problem/1079 二.题意 给定一个长度为L的区间,给你n个子区间,没一个区间涂成一种颜色,问最后这个区间内有几种 ...
随机推荐
-
遍历jsonobject
遍历jsonobject 1 entrySet.iterator生成迭代器 2 从迭代器获取Map.Entry的单元对象 3 获取key和value Map<String,JSONObject& ...
-
【ASP.NET Core】MVC中自定义视图的查找位置
.NET Core 的内容处处可见,刷爆全球各大社区,所以,老周相信各位大伙伴已经看得不少了,故而,老周不考虑一个个知识点地去写,那样会成为年度最大的屁话,何况官方文档也很详尽.老周主要扯一下大伙伴们 ...
-
Tomcat权威指南-读书摘要系列10
Tomcat集群 一些集群技术 DNS请求分配 TCP网络地址转换请求分配 Mod_proxy_balance负载均衡与故障复原 JDBC请求分布与故障复原
-
python 查找字符串中字母的个数
2017.6.17 更新:好像知道错在哪里了.以第一个为例,输入应该是“AHHaaBBa”,因为直接输入AHHaaBBa时,系统不知到这是一个变量还是字符串,所以必须输入的时候申明定义.既然这样的话, ...
-
ASP.NET 构建高性能网站 第5篇
利用分析工具分析加载页面信息 站点的优化说到底还是站点每一个页面的优化,即使得站点的页面更快的呈现在用户的眼前.所以在此之前,我们首先来看看一个web页面的组成部分: 1. Html文件:在ASP.N ...
-
【Python】Python 微服务框架 nameko
nameko: 1.支持服务发现.负载均衡 2.支持依赖自动注入,使用很方便 3.缺点:超时.限速.权限等机制不完善 代码示例:https://github.com/junneyang/nameko- ...
-
MFC中ON_UPDATE_COMMAND_UI和ON_COMMAND消息区别
原文链接地址:http://www.cnblogs.com/orez88/articles/2217823.html 第一个是你打开这个菜单时,处理这个菜单的状态,比如选中.变灰等等. 第二个是响应 ...
-
谜题8:Dos Equis
这个谜题将测试你对条件操作符的掌握程度,这个操作符有一个更广为人知的名字:问号冒号操作符.下面的程序将会打印出什么呢? public class DosEquis{ public static voi ...
-
python大数据挖掘系列之基础知识入门
preface Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们. Python数据分析与挖掘技术概述 所谓数据分析,即对已知的数据进行分析 ...
-
一个.java文件内只能写一个class吗
先给结论:当然不是!! 可以有多个类,但只能有一个public的类,并且public的类名必须与文件名相一致.一个文件中可以不含public类,如果只有一个非public类,此时可以跟文件名不同. 为 ...