Distinct Subsequences
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
DP,化归为二维地图的走法问题。
r a b b i t
1 0 0 0 0 0 0
r 1
a 1
b 1
b 1
b 1
i 1
t 1
设矩阵transArray,其中元素transArray[i][j]为S[0,...,i]到T[0,...,j]有多少种转换方式。
问题就转为从左上角只能走对角(匹配)或者往下(删除字符),到右下角一共有多少种走法。
transArray[i][0]初始化为1的含义是:任何长度的S,如果转换为空串,那就只有删除全部字符这1种方式。
当S[i-1]==T[j-1],说明可以从transArray[i-1][j-1]走对角到达transArray[i][j](S[i-1]匹配T[j-1]),此外还可以从transArray[i-1][j]往下到达transArray[i][j](删除S[i-1])
当S[i-1]!=T[j-1],说明只能从transArray[i-1][j]往下到达transArray[i][j](删除S[i-1])
class Solution {
public:
int numDistinct(string S, string T) {
int m = S.size();
int n = T.size(); vector<vector<int> > path(m+, vector<int>(n+, ));
for(int i = ; i < m+; i ++)
path[i][] = ; for(int i = ; i < m+; i ++)
{
for(int j = ; j < n+; j ++)
{
if(S[i-] == T[j-])
path[i][j] = path[i-][j-] + path[i-][j];
else
path[i][j] = path[i-][j];
}
} return path[m][n];
}
};