题意:
初始数列,每个数都在1~k以内
支持两种操作:1.修改一个数,修改后的数在1~k内
2.查询一个最短包含1~k的序列的长度
查询100000,数列100000,k是50
题解
考虑压缩状态到一个二进制串。
用一个线段树。每个点维护前缀的状态,后缀的状态。被包含的最短的
然后如果暴力合并子树信息,这样是的,其实有用的状态不超过个。那么时间复杂度就是
合并子树的时候尺取。
就是。卡卡卡卡卡常大概好像就过了
#include <cassert>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio> using namespace std; #define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define REP(i, n) FOR (i, 0, (n))
#define TRACE(x) cout << #x << " = " << x << endl
#define _ << " _ " << typedef long long llint;
typedef pair<llint, int> pli; const int INF = 1e9;
const int MAXNODES = 262144;
const int offset = 131072; inline bool subset(llint mask1, llint mask2) {
return (mask1 & mask2) == mask1;
} int n, k, q; class tournament {
private:
struct node {
int len;
pli pref[50];
pli suff[50];
int ans; node() { ans = INF; len = 0; }
node(int t, int v) {
len = 1;
pref[0] = suff[0] = pli(1LL<<v, t);
ans = INF;
}
}; node tree[MAXNODES]; void merge(node &t, node &l, node &r) {
int pref_len, suff_len; pref_len = 0;
for (int i = 0; i < l.len; ++i)
t.pref[pref_len++] = l.pref[i];
for (int i = 0; i < r.len; ++i)
if (pref_len == 0 || !subset(r.pref[i].first, t.pref[pref_len-1].first)) {
t.pref[pref_len] = r.pref[i];
if (pref_len > 0) t.pref[pref_len].first |= t.pref[pref_len-1].first;
++pref_len;
} suff_len = 0;
for (int i = 0; i < r.len; ++i)
t.suff[suff_len++] = r.suff[i];
for (int i = 0; i < l.len; ++i)
if (suff_len == 0 || !subset(l.suff[i].first, t.suff[suff_len-1].first)) {
t.suff[suff_len] = l.suff[i];
if (suff_len > 0) t.suff[suff_len].first |= t.suff[suff_len-1].first;
++suff_len;
} assert(pref_len == suff_len);
t.len = pref_len; t.ans = INF;
int pref_pos = 0;
for (int suff_pos = l.len-1; suff_pos >= 0; --suff_pos) {
while (pref_pos < r.len && (l.suff[suff_pos].first | r.pref[pref_pos].first) != (1LL<<k)-1)
++pref_pos;
if (pref_pos < r.len) {
llint curr_mask = l.suff[suff_pos].first | r.pref[pref_pos].first;
if (curr_mask == (1LL<<k)-1)
t.ans = min(t.ans, r.pref[pref_pos].second-l.suff[suff_pos].second+1);
}
}
t.ans = min(t.ans, min(l.ans, r.ans));
} public:
tournament() {} void update(int t, int v) {
t += offset;
tree[t] = node(t-offset, v);
for (t /= 2; t > 0; t /= 2)
merge(tree[t], tree[2*t], tree[2*t+1]);
} int query(void) {
return tree[1].ans;
} }; tournament T; int main(void) { #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
FO(nekameleoni)
scanf("%d%d%d", &n, &k, &q); REP (i, n) {
int v;
scanf("%d", &v);
--v;
T.update(i, v);
} REP (i, q) {
int t;
scanf("%d", &t);
if (t == 1) {
int x, v;
scanf("%d%d", &x, &v);
--x; --v;
T.update(x, v);
} else {
int ans = T.query();
printf("%d\n", ans == INF ? -1 : ans);
}
} return 0;
}