红黑树c源码实现与剖析,教你彻底实现红黑树
作者:July 那谁 时间:二零一一年一月三日
-------------------------
前言:
红黑树作为一种经典而高级的数据结构,相信,已经被不少人实现过,
但不是因为程序不够完善而无法运行,就是因为程序完全没有注释,初学者根本就看不懂。
此份红黑树的c源码最初从linux-lib-rbtree.c而来,后经一网友那谁用c写了出来。
在此,向原作者表示敬意。但原来的程序存在诸多问题,且全程序没有任何一行注释。
没有一行注释的程序,令程序的价值大打折扣。
所以,我特把这份源码放到了编译器[vc 6.0]上,一行一行的完善修正,一行一行的给它添加注释,
至此,红黑树c带完美注释的源码,就摆在了您眼前,有不妥、不正之处,还望不吝指正。
//此文,还算不上剖析,只是给的注释很详尽而已。
====
红黑树的四篇文章:
教你透彻了解红黑树:
http://blog.csdn.net/v_JULY_v/archive/2010/12/29/6105630.aspx
红黑树算法的层层剖析与逐步实现
http://blog.csdn.net/v_JULY_v/archive/2010/12/31/6109153.aspx
教你彻底实现红黑树:红黑树的c源码实现与剖析
http://blog.csdn.net/v_JULY_v/archive/2011/01/03/6114226.aspx
一步一图一代码,一定要让你真正彻底明白红黑树 [最后更新]
http://blog.csdn.net/v_JULY_v/archive/2011/01/09/6124989.aspx
-------------------------
ok,咱们开始吧。
相信,经过我前俩篇博文对红黑树的介绍,你应该对红黑树有了透彻的理解了。
[没看过的朋友,可事先查上面的倆篇文章,或与此文的源码剖析对应着看]
本套源码剖析把重点放在红黑树的3种插入情况,与红黑树的4种删除情况。
其余的能从略则尽量简略。
目录:
一、左旋代码分析
二、右旋
三、红黑树查找结点
四、红黑树的插入
五、红黑树的3种插入情况
六、红黑树的删除
七、红黑树的4种删除情况
八、测试用例
好的,咱们还是先从树的左旋、右旋代码,开始:
[大部分分析,直接给注释。]
一、左旋代码分析
/*-----------------------------------------------------------
| node right
| / \ ==> / \
| a right node y
| / \ / \
| b y a b //左旋
-----------------------------------------------------------*/
static rb_node_t* rb_rotate_left(rb_node_t* node, rb_node_t* root)
{
rb_node_t* right = node->right; //指定指针指向 right<--node->right
if ((node->right = right->left))
{
right->left->parent = node; //好比上面的注释图,node成为b的父母
}
right->left = node; //node成为right的左孩子
if ((right->parent = node->parent))
{
if (node == node->parent->right)
{
node->parent->right = right;
}
else
{
node->parent->left = right;
}
}
else
{
root = right;
}
node->parent = right; //right成为node的父母
return root;
}
二、右旋
/*-----------------------------------------------------------
| node left
| / \ / \
| left y ==> a node
| / \ / \
| a b b y //右旋与左旋差不多,分析略过
-----------------------------------------------------------*/
static rb_node_t* rb_rotate_right(rb_node_t* node, rb_node_t* root)
{
rb_node_t* left = node->left;
if ((node->left = left->right))
{
left->right->parent = node;
}
left->right = node;
if ((left->parent = node->parent))
{
if (node == node->parent->right)
{
node->parent->right = left;
}
else
{
node->parent->left = left;
}
}
else
{
root = left;
}
node->parent = left;
return root;
}
三、红黑树查找结点
//----------------------------------------------------
//rb_search_auxiliary:查找
//rb_node_t* rb_search:返回找到的结点
//----------------------------------------------------
static rb_node_t* rb_search_auxiliary(key_t key, rb_node_t* root, rb_node_t** save)
{
rb_node_t *node = root, *parent = NULL;
int ret;
while (node)
{
parent = node;
ret = node->key - key;
if (0 < ret)
{
node = node->left;
}
else if (0 > ret)
{
node = node->right;
}
else
{
return node;
}
}
if (save)
{
*save = parent;
}
return NULL;
}
//返回上述rb_search_auxiliary查找结果
rb_node_t* rb_search(key_t key, rb_node_t* root)
{
return rb_search_auxiliary(key, root, NULL);
}
四、红黑树的插入
//---------------------------------------------------------
//红黑树的插入结点
rb_node_t* rb_insert(key_t key, data_t data, rb_node_t* root)
{
rb_node_t *parent = NULL, *node;
parent = NULL;
if ((node = rb_search_auxiliary(key, root, &parent))) //调用rb_search_auxiliary找到插入结
点的地方
{
return root;
}
node = rb_new_node(key, data); //分配结点
node->parent = parent;
node->left = node->right = NULL;
node->color = RED;
if (parent)
{
if (parent->key > key)
{
parent->left = node;
}
else
{
parent->right = node;
}
}
else
{
root = node;
}
return rb_insert_rebalance(node, root); //插入结点后,调用rb_insert_rebalance修复红黑树
的性质
}
五、红黑树的3种插入情况
接下来,咱们重点分析针对红黑树插入的3种情况,而进行的修复工作。
//--------------------------------------------------------------
//红黑树修复插入的3种情况
//为了在下面的注释中表示方便,也为了让下述代码与我的倆篇文章相对应,
//用z表示当前结点,p[z]表示父母、p[p[z]]表示祖父、y表示叔叔。
//--------------------------------------------------------------
static rb_node_t* rb_insert_rebalance(rb_node_t *node, rb_node_t *root)
{
rb_node_t *parent, *gparent, *uncle, *tmp; //父母p[z]、祖父p[p[z]]、叔叔y、临时结点*tmp
while ((parent = node->parent) && parent->color == RED)
{ //parent 为node的父母,且当父母的颜色为红时
gparent = parent->parent; //gparent为祖父
if (parent == gparent->left) //当祖父的左孩子即为父母时。
//其实上述几行语句,无非就是理顺孩子、父母、祖父的关系。:D。
{
uncle = gparent->right; //定义叔叔的概念,叔叔y就是父母的右孩子。
if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的
{
uncle->color = BLACK; //将叔叔结点y着为黑色
parent->color = BLACK; //z的父母p[z]也着为黑色。解决z,p[z]都是红色的问题。
gparent->color = RED;
node = gparent; //将祖父当做新增结点z,指针z上移俩层,且着为红色。
//上述情况1中,只考虑了z作为父母的右孩子的情况。
}
else //情况2:z的叔叔y是黑色的,
{
if (parent->right == node) //且z为右孩子
{
root = rb_rotate_left(parent, root); //左旋[结点z,与父母结点]
tmp = parent;
parent = node;
node = tmp; //parent与node 互换角色
}
//情况3:z的叔叔y是黑色的,此时z成为了左孩子。
//注意,1:情况3是由上述情况2变化而来的。
//......2:z的叔叔总是黑色的,否则就是情况1了。
parent->color = BLACK; //z的父母p[z]着为黑色
gparent->color = RED; //原祖父结点着为红色
root = rb_rotate_right(gparent, root); //右旋[结点z,与祖父结点]
}
}
else
{
//这部分是特别为情况1中,z作为左孩子情况,而写的。
uncle = gparent->left; //祖父的左孩子作为叔叔结点。[原理还是与上部分一样的]
if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的
{
uncle->color = BLACK;
parent->color = BLACK;
gparent->color = RED;
node = gparent; //同上。
}
else //情况2:z的叔叔y是黑色的,
{
if (parent->left == node) //且z为左孩子
{
root = rb_rotate_right(parent, root); //以结点parent、root右旋
tmp = parent;
parent = node;
node = tmp; //parent与node 互换角色
}
//经过情况2的变化,成为了情况3.
parent->color = BLACK;
gparent->color = RED;
root = rb_rotate_left(gparent, root); //以结点gparent和root左旋
}
}
}
root->color = BLACK; //根结点,不论怎样,都得置为黑色。
return root; //返回根结点。
}
六、红黑树的删除
//------------------------------------------------------------
//红黑树的删除结点
rb_node_t* rb_erase(key_t key, rb_node_t *root)
{
rb_node_t *child, *parent, *old, *left, *node;
color_t color;
if (!(node = rb_search_auxiliary(key, root, NULL))) //调用rb_search_auxiliary查找要删除的
结点
{
printf("key %d is not exist!\n");
return root;
}
old = node;
if (node->left && node->right)
{
node = node->right;
while ((left = node->left) != NULL)
{
node = left;
}
child = node->right;
parent = node->parent;
color = node->color;
if (child)
{
child->parent = parent;
}
if (parent)
{
if (parent->left == node)
{
parent->left = child;
}
else
{
parent->right = child;
}
}
else
{
root = child;
}
if (node->parent == old)
{
parent = node;
}
node->parent = old->parent;
node->color = old->color;
node->right = old->right;
node->left = old->left;
if (old->parent)
{
if (old->parent->left == old)
{
old->parent->left = node;
}
else
{
old->parent->right = node;
}
}
else
{
root = node;
}
old->left->parent = node;
if (old->right)
{
old->right->parent = node;
}
}
else
{
if (!node->left)
{
child = node->right;
}
else if (!node->right)
{
child = node->left;
}
parent = node->parent;
color = node->color;
if (child)
{
child->parent = parent;
}
if (parent)
{
if (parent->left == node)
{
parent->left = child;
}
else
{
parent->right = child;
}
}
else
{
root = child;
}
}
free(old);
if (color == BLACK)
{
root = rb_erase_rebalance(child, parent, root); //调用rb_erase_rebalance来恢复红黑树性
质
}
return root;
}
七、红黑树的4种删除情况
//----------------------------------------------------------------
//红黑树修复删除的4种情况
//为了表示下述注释的方便,也为了让下述代码与我的倆篇文章相对应,
//x表示要删除的结点,*other、w表示兄弟结点,
//----------------------------------------------------------------
static rb_node_t* rb_erase_rebalance(rb_node_t *node, rb_node_t *parent, rb_node_t *root)
{
rb_node_t *other, *o_left, *o_right; //x的兄弟*other,兄弟左孩子*o_left,*o_right
while ((!node || node->color == BLACK) && node != root)
{
if (parent->left == node)
{
other = parent->right;
if (other->color == RED) //情况1:x的兄弟w是红色的
{
other->color = BLACK;
parent->color = RED; //上俩行,改变颜色,w->黑、p[x]->红。
root = rb_rotate_left(parent, root); //再对p[x]做一次左旋
other = parent->right; //x的新兄弟new w 是旋转之前w的某个孩子。其实就是左旋后
的效果。
}
if ((!other->left || other->left->color == BLACK) &&
(!other->right || other->right->color == BLACK))
//情况2:x的兄弟w是黑色,且w的俩个孩子也
都是黑色的
{ //由于w和w的俩个孩子都是黑色的,则在x和w上得去掉一黑色,
other->color = RED; //于是,兄弟w变为红色。
node = parent; //p[x]为新结点x
parent = node->parent; //x<-p[x]
}
else //情况3:x的兄弟w是黑色的,
{ //且,w的左孩子是红色,右孩子为黑色。
if (!other->right || other->right->color == BLACK)
{
if ((o_left = other->left)) //w和其左孩子left[w],颜色交换。
{
o_left->color = BLACK; //w的左孩子变为由黑->红色
}
other->color = RED; //w由黑->红
root = rb_rotate_right(other, root); //再对w进行右旋,从而红黑性质恢复。
other = parent->right; //变化后的,父结点的右孩子,作为新的兄弟结点
w。
}
//情况4:x的兄弟w是黑色的
other->color = parent->color; //把兄弟节点染成当前节点父节点的颜色。
parent->color = BLACK; //把当前节点父节点染成黑色
if (other->right) //且w的右孩子是红
{
other->right->color = BLACK; //兄弟节点w右孩子染成黑色
}
root = rb_rotate_left(parent, root); //并再做一次左旋
node = root; //并把x置为根。
break;
}
}
//下述情况与上述情况,原理一致。分析略。
else
{
other = parent->left;
if (other->color == RED)
{
other->color = BLACK;
parent->color = RED;
root = rb_rotate_right(parent, root);
other = parent->left;
}
if ((!other->left || other->left->color == BLACK) &&
(!other->right || other->right->color == BLACK))
{
other->color = RED;
node = parent;
parent = node->parent;
}
else
{
if (!other->left || other->left->color == BLACK)
{
if ((o_right = other->right))
{
o_right->color = BLACK;
}
other->color = RED;
root = rb_rotate_left(other, root);
other = parent->left;
}
other->color = parent->color;
parent->color = BLACK;
if (other->left)
{
other->left->color = BLACK;
}
root = rb_rotate_right(parent, root);
node = root;
break;
}
}
}
if (node)
{
node->color = BLACK; //最后将node[上述步骤置为了根结点],改为黑色。
}
return root; //返回root
}
八、测试用例
//主函数
int main()
{
int i, count = 100;
key_t key;
rb_node_t* root = NULL, *node = NULL;
srand(time(NULL));
for (i = 1; i < count; ++i)
{
key = rand() % count;
if ((root = rb_insert(key, i, root)))
{
printf("[i = %d] insert key %d success!\n", i, key);
}
else
{
printf("[i = %d] insert key %d error!\n", i, key);
exit(-1);
}
if ((node = rb_search(key, root)))
{
printf("[i = %d] search key %d success!\n", i, key);
}
else
{
printf("[i = %d] search key %d error!\n", i, key);
exit(-1);
}
if (!(i % 10))
{
if ((root = rb_erase(key, root)))
{
printf("[i = %d] erase key %d success\n", i, key);
}
else
{
printf("[i = %d] erase key %d error\n", i, key);
}
}
}
return 0;
}
ok,完。
后记:
一、欢迎任何人就此份源码,以及我的前述倆篇文章,进行讨论、提议。
但任何人,引用此份源码剖析,必须得注明作者本人July以及出处。
红黑树系列,已经写了三篇文章,相信,教你透彻了解红黑树的目的,应该达到了。
二、本文完整源码,请到此处下载:
http://download.csdn.net/source/2958890
------------------------------------------------------------------------------------
作者声明:
本人July对本博客所有任何内容享有版权,转载或引用任何内容、
资料,请注明作者本人 July和出处。谢谢。
July、二零一一年一月三日。