Description
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int dp[][][];
int a[];
int main()
{
int x,y,z,i,t;
while(~scanf("%d%d",&x,&y))
{
for(i=;i<=x;i++)
scanf("%d",&a[i]);
for(i=;i<;i++)
for(t=;t<;t++)
for(int j=;j<;j++)
dp[i][t][j]=-inf;
dp[][][]=;
//dp[0][1][2]=0;
memset(dp,,sizeof(dp));
for(i=;i<=x;i++)
{
for(t=;t<=y;t++)
for(int j=;j<=;j++)
{
dp[i][t][j]=max(dp[i][t][j],dp[i-][t][j]);
if(dp[i-][t][j]!=-inf)
{
if(a[i]!=j&&t!=y)
dp[i][t+][a[i]]=max(dp[i][t+][a[i]],dp[i-][t][j]+);
else if(a[i]==j)
dp[i][t][a[i]]=max(dp[i][t][a[i]],dp[i-][t][j]+);
}
}
}
int maxx=;
for(i=;i<=y;i++)
for(t=;t<=;t++)
maxx=max(maxx,dp[x][i][t]);
printf("%d\n",maxx);
}
return ;
}