iris数据集
iris以鸢尾花的特征作为数据来源,常用在分类操作中。该数据集由3种不同类型的鸢尾花的50个样本数据构成。其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。
library(ggplot2)
summary(iris)
qplot(Petal.Length, Petal.Width, data=iris, color=Species)
1:C5.0决策树
先加载所需要的包
library(C50)
library(printr)
对iris数据集进行抽样,获得训练样本和测试样本
train.indeces <- sample(1:nrow(iris), 100)
iris.train <- iris[train.indeces, ]
iris.test <- iris[-train.indeces, ]
利用C5.0函数对训练样本进行模型训练
model <- C5.0(Species ~ ., data = iris.train)
对测试样本进行预测
results <- predict(object = model, newdata = iris.test, type = "class")
confusion_matrix=table(results, iris.test$Species)
confusion_matrix
计算错误率
error=1-sum(diag(confusion_matrix))/nrow(iris.test)
预测错误率为0.12
2:K-means
模型建立
library(stats)
library(printr)
model <- kmeans(x = subset(iris, select = -Species), centers = 3)
分类性能测试
table(model$cluster, iris$Species)
/ setosa versicolor virginica
1 33 0 0
2 17 4 0
3 0 46 50
3:Support Vector Machines导入包library(e1071)library(printr) 对iris数据集进行抽样,获得训练样本和测试样本train.indeces <- sample(1:nrow(iris), 100)iris.train <- iris[train.indeces, ]iris.test <- iris[-train.indeces, ]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
利用C5.0函数对训练样本进行模型训练
model <- svm(Species ~ ., data = iris.train)
对测试样本进行预测
results <- predict(object = model, newdata = iris.test, type = "class")
confusion_matrix=table(results, iris.test$Species)
confusion_matrix
results/ setosa versicolor virginica
setosa 12 0 0
versicolor 0 19 0
virginica 0 1 18
计算错误率
error=1-sum(diag(confusion_matrix))/nrow(iris.test)
预测错误率为0.02
4:Apriori导入包和数据集library(arules)library(printr)data("Adult")训练模型rules <- apriori(Adult, parameter = list(support = 0.4, confidence = 0.7), appearance = list(rhs = c("race=White", "sex=Male"), default = "lhs"))获得前五的关联关系rules.sorted <- sort(rules, by = "lift")top5.rules <- head(rules.sorted, 5)as(top5.rules, "data.frame") rules support confidence lift2 {relationship=Husband} => {sex=Male} 0.4036485 0.9999493 1.49585112 {marital-status=Married-civ-spouse,relationship=Husband} => {sex=Male} 0.4034028 0.9999492 1.4958513 {marital-status=Married-civ-spouse} => {sex=Male} 0.4074157 0.8891818 1.3301514 {marital-status=Married-civ-spouse} => {race=White} 0.4105892 0.8961080 1.04802719 {workclass=Private,native-country=United-States} => {race=White} 0.5433848 0.8804113 1.029669
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
5:EM算法library(mclust)library(printr)model <- Mclust(subset(iris, select = -Species))table(model$classification, iris$Species)/ setosa versicolor virginica1 50 0 02 0 50 50
6:PageRankPageRank用来计算图中各点的相关程度,其原理是马尔科夫链library(igraph)library(dplyr)library(printr)生成随机的网络图g <- random.graph.game(n = 10, p.or.m = 1/4, directed = TRUE)plot(g)对每个节点计算rankpage值pr <- page.rank(g)$vectordf <- data.frame(Object = 1:10, PageRank = pr)arrange(df, desc(PageRank))Object PageRank10 0.17686557 0.13693881 0.12638764 0.11981672 0.11618249 0.08912666 0.08475798 0.07932865 0.03901473 0.0315813
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
7:adaboostlibrary(adabag)library(printr)train.indeces <- sample(1:nrow(iris), 100)iris.train <- iris[train.indeces, ]iris.test <- iris[-train.indeces, ]模型训练model <- boosting(Species ~ ., data = iris.train)训练结果results <- predict(object = model, newdata = iris.test, type = "class")results$confusionPredicted Class/Observed Class setosa versicolor virginicasetosa 15 0 0versicolor 0 18 4virginica 0 0 13
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
8:kNNlibrary(class)library(printr)train.indeces <- sample(1:nrow(iris), 100)iris.train <- iris[train.indeces, ]iris.test <- iris[-train.indeces, ]模型训练results <- knn(train = subset(iris.train, select = -Species), test = subset(iris.test, select = -Species), cl = iris.train$Species)分类效果table(results, iris.test$Species)results/ setosa versicolor virginicasetosa 22 0 0versicolor 0 10 0virginica 0 1 17
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
9:naive bayeslibrary(e1071)library(printr)train.indeces <- sample(1:nrow(iris), 100)iris.train <- iris[train.indeces, ]iris.test <- iris[-train.indeces, ]训练集训练模型model <- naiveBayes(x = subset(iris.train, select=-Species), y = iris.train$Species)测试集预测效果results <- predict(object = model, newdata = iris.test,type ="class")table(results, iris.test$Species)results/ setosa versicolor virginicasetosa 18 0 0versicolor 0 17 0virginica 0 4 11
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
10:cart
library(rpart)
library(printr)
train.indeces <- sample(1:nrow(iris), 100)
iris.train <- iris[train.indeces, ]
iris.test <- iris[-train.indeces, ]
训练模型
model <- rpart(Species ~ ., data = iris.train)
测试模型
results <- predict(object = model, newdata = iris.test, type = "class")
table(results, iris.test$Species)
results/ setosa versicolor virginica
setosa 15 0 0
versicolor 0 16 6
virginica 0 1 12
转自:http://blog.csdn.net/cmddds11235/article/details/47724871