[SCOI2010]生成字符串
Description
lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?
输入格式:输入数据是一行,包括2个数字n和m;
输出格式:输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数;
Solution
1.本题可看为使组成01串中任意前缀中1的个数比0多,而0和1的个数不等;
2.我们可以将0看做向上走,1看做向右走,求从原点走到(n,m)不越过y=x的不同方案数;
3.那么我们考虑卡特兰数通项公式的来源,本题解可化为总方案数-不可行方案数,不合法方案数即为触碰到y=x+1的方案数,即C(n+m,m)-C(n+m,m-1)= (n+m)!/(n+1)!m!(n-
m+1)%20100403;
4.用扩展欧几里得求模mod=20100403剩余系下分母的逆元,计算对应的ans即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const long long mod=20100403;
long long n,m,i,ans,j,k,q;
void exgcd(long long a,long long b,long long &gcd,long long &x,long long &y) //Çó³Ë·¨ÄæÔª
{
if(!b){
x=1;
y=0;
gcd=a;
return;
}
exgcd(b,a%b,gcd,y,x);
y-=x*(a/b);
return;
}
long long cul(long long a,long long b)
{
long long gcd,x,y;
exgcd(a,b,gcd,x,y);
if(gcd==1)return(x+b)%b;
}
int main()
{
scanf("%d%d",&n,&m);
j=n-m+1;
k=n+1;
for(i=n+1;i<=n+m;i++)j=(j%mod)*(i%mod)%mod;
for(i=2;i<=m;i++)k=(k%mod)*(i%mod)%mod;
q=cul(k,mod);
ans=j*q%mod;
printf("%d\n",ans);
return 0;
}
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html