spark 大型项目实战(十四):用户访问session分析(十四) --spark 上下文和构造测试数据

时间:2022-09-24 00:49:03

文章地址:http://www.haha174.top/article/details/251331

一.构建上下文

再生产环境和开发环境使用的spark 上下文肯定是不一样的比如说sqlContext 在生产用的hivecontext 在开发的时候就用的sqlcontext.

/** * 用户访问session分析Spark作业 * @author Administrator * */
public class UserVisitSessionAnalyzeSpark {

    public static void main(String[] args) {
        // 构建Spark上下文
        SparkConf conf = new SparkConf()
                .setAppName(Constants.SPARK.SPARK_APP_NAME_SESSION)
                .setMaster("local");    
        JavaSparkContext sc = new JavaSparkContext(conf);
        SQLContext sqlContext = getSQLContext(sc.sc());

        // 生成模拟测试数据
        mockData(sc, sqlContext);

        // 关闭Spark上下文
        sc.close(); 
    }

    /** * 获取SQLContext * 如果是在本地测试环境的话,那么就生成SQLContext对象 * 如果是在生产环境运行的话,那么就生成HiveContext对象 * @param sc SparkContext * @return SQLContext */
    private static SQLContext getSQLContext(SparkContext sc) {
        boolean local =GetValueUtils.getBoolean( ConfigurationManager.getProperty(Constants.SPARK.SPARK_LOCAL));
        if(local) {
            return new SQLContext(sc);
        } else {
            return new HiveContext(sc);
        }
    }

    /** * 生成模拟数据(只有本地模式,才会去生成模拟数据) * @param sc * @param sqlContext */
    private static void mockData(JavaSparkContext sc, SQLContext sqlContext) {
        boolean local =GetValueUtils.getBoolean( ConfigurationManager.getProperty(Constants.SPARK.SPARK_LOCAL));
        if(local) {
            MockData.mock(sc, sqlContext);  
        }
    }

}

二.构建模拟数据

下面构造一些开发用的测试数据

public class MockData {

    /** * 弄你数据 * @param sc * @param sqlContext */
    public static void mock(JavaSparkContext sc,
            SQLContext sqlContext) {
        List<Row> rows = new ArrayList<Row>();

        String[] searchKeywords = new String[] {"火锅", "蛋糕", "重庆辣子鸡", "重庆小面",
                "呷哺呷哺", "新辣道鱼火锅", "国贸大厦", "太古商场", "日本料理", "温泉"};
        String date = DateUtils.dateToString(DateUtils.getNowDate());
        String[] actions = new String[]{"search", "click", "order", "pay"};
        Random random = new Random();

        for(int i = 0; i < 100; i++) {
            long userid = random.nextInt(100); 

            for(int j = 0; j < 10; j++) {
                String sessionid = UUID.randomUUID().toString().replace("-", ""); 
                String baseActionTime = date + " " +  DateUtils.fullZero(random.nextInt(23));

                for(int k = 0; k < random.nextInt(100); k++) {
                    long pageid = random.nextInt(10); 
                    String actionTime = baseActionTime + ":" + DateUtils.fullZero(random.nextInt(59)) + ":" +  DateUtils.fullZero(random.nextInt(59));
                    String searchKeyword = null;
                    Long clickCategoryId = null;
                    Long clickProductId = null;
                    String orderCategoryIds = null;
                    String orderProductIds = null;
                    String payCategoryIds = null;
                    String payProductIds = null;

                    String action = actions[random.nextInt(4)];
                    if("search".equals(action)) {
                        searchKeyword = searchKeywords[random.nextInt(10)]; 
                    } else if("click".equals(action)) {
                        clickCategoryId = Long.valueOf(String.valueOf(random.nextInt(100))); 
                        clickProductId = Long.valueOf(String.valueOf(random.nextInt(100))); 
                    } else if("order".equals(action)) {
                        orderCategoryIds = String.valueOf(random.nextInt(100)); 
                        orderProductIds = String.valueOf(random.nextInt(100));
                    } else if("pay".equals(action)) {
                        payCategoryIds = String.valueOf(random.nextInt(100)); 
                        payProductIds = String.valueOf(random.nextInt(100));
                    }

                    Row row = RowFactory.create(date, userid, sessionid, 
                            pageid, actionTime, searchKeyword,
                            clickCategoryId, clickProductId,
                            orderCategoryIds, orderProductIds,
                            payCategoryIds, payProductIds);
                    rows.add(row);
                }
            }
        }

        JavaRDD<Row> rowsRDD = sc.parallelize(rows);

        StructType schema = DataTypes.createStructType(Arrays.asList(
                DataTypes.createStructField("date", DataTypes.StringType, true),
                DataTypes.createStructField("user_id", DataTypes.LongType, true),
                DataTypes.createStructField("session_id", DataTypes.StringType, true),
                DataTypes.createStructField("page_id", DataTypes.LongType, true),
                DataTypes.createStructField("action_time", DataTypes.StringType, true),
                DataTypes.createStructField("search_keyword", DataTypes.StringType, true),
                DataTypes.createStructField("click_category_id", DataTypes.LongType, true),
                DataTypes.createStructField("click_product_id", DataTypes.LongType, true),
                DataTypes.createStructField("order_category_ids", DataTypes.StringType, true),
                DataTypes.createStructField("order_product_ids", DataTypes.StringType, true),
                DataTypes.createStructField("pay_category_ids", DataTypes.StringType, true),
                DataTypes.createStructField("pay_product_ids", DataTypes.StringType, true)));

        Dataset df = sqlContext.createDataFrame(rowsRDD, schema);

        df.registerTempTable("user_visit_action");
        df.show();
        for(Row row:(Row[])df.take(1)){
            System.out.println(row);
        }


        /** * ================================================================== */

        rows.clear();
        String[] sexes = new String[]{"male", "female"};
        for(int i = 0; i < 100; i ++) {
            long userid = i;
            String username = "user" + i;
            String name = "name" + i;
            int age = random.nextInt(60);
            String professional = "professional" + random.nextInt(100);
            String city = "city" + random.nextInt(100);
            String sex = sexes[random.nextInt(2)];

            Row row = RowFactory.create(userid, username, name, age, 
                    professional, city, sex);
            rows.add(row);
        }

        rowsRDD = sc.parallelize(rows);

        StructType schema2 = DataTypes.createStructType(Arrays.asList(
                DataTypes.createStructField("user_id", DataTypes.LongType, true),
                DataTypes.createStructField("username", DataTypes.StringType, true),
                DataTypes.createStructField("name", DataTypes.StringType, true),
                DataTypes.createStructField("age", DataTypes.IntegerType, true),
                DataTypes.createStructField("professional", DataTypes.StringType, true),
                DataTypes.createStructField("city", DataTypes.StringType, true),
                DataTypes.createStructField("sex", DataTypes.StringType, true)));

        Dataset df2 = sqlContext.createDataFrame(rowsRDD, schema2);
        df.show();
        for(Row row:(Row[])df.take(1)){
            System.out.println(row);
        }

        df2.registerTempTable("user_info");
    }

}

欢迎关注,更多福利

spark 大型项目实战(十四):用户访问session分析(十四) --spark 上下文和构造测试数据