一,概述
Flutter
中拥有30多种预定义的布局widget
,常用的有Container
、Padding
、Center
、Flex
、Row
、Colum
、ListView
、GridView
。按照《Flutter技术入门与实战》上面来说的话,大概分为四类
- 基础布局组件:Container(容器布局),Center(居中布局),Padding(填充布局),Align(对齐布局),Colum(垂直布局),Row(水平布局),Expanded(配合Colum,Row使用),FittedBox(缩放布局),Stack(堆叠布局),overflowBox(溢出父视图容器)。
- 宽高尺寸处理:SizedBox(设置具体尺寸),ConstrainedBox(限定最大最小宽高布局),LimitedBox(限定最大宽高布局),AspectRatio(调整宽高比),FractionallySizedBox(百分比布局)
- 列表和表格处理:ListView(列表),GridView(网格),Table(表格)
- 其它布局处理:Transform(矩阵转换),Baseline(基准线布局),Offstage(控制是否显示组件),Wrap(按宽高自动换行布局)
二,基础布局处理组件
-
Container
- 介绍:
一个拥有绘制、定位、调整大小的widget
,示意图如下:
- 组成
Container的组成如下:
- 最里层的是child元素;
- child元素首先会被padding包着;
- 然后添加额外的constraints限制;
- 最后添加margin。
Container的绘制的过程如下:
- 首先会绘制transform效果;
- 接着绘制decoration;
- 然后绘制child;
- 最后绘制foregroundDecoration。
Container自身尺寸的调节分两种情况:
- Container在没有子节点(children)的时候,会试图去变得足够大。除非constraints是unbounded限制,在这种情况下,Container会试图去变得足够小。
- 带子节点的Container,会根据子节点尺寸调节自身尺寸,但是Container构造器中如果包含了width、height以及constraints,则会按照构造器中的参数来进行尺寸的调节。
- 布局行为
由于Container组合了一系列的widget,这些widget都有自己的布局行为,因此Container的布局行为有时候是比较复杂的。
一般情况下,Container会遵循如下顺序去尝试布局:
- 对齐(alignment);
- 调节自身尺寸适合子节点;
- 采用width、height以及constraints布局;
- 扩展自身去适应父节点;
- 调节自身到足够小。
进一步说:
- 如果没有子节点、没有设置width、height以及constraints,并且父节点没有设置unbounded的限制,Container会将自身调整到足够小。
- 如果没有子节点、对齐方式(alignment),但是提供了width、height或者constraints,那么Container会根据自身以及父节点的限制,将自身调节到足够小。
- 如果没有子节点、width、height、constraints以及alignment,但是父节点提供了bounded限制,那么Container会按照父节点的限制,将自身调整到足够大。
- 如果有alignment,父节点提供了unbounded限制,那么Container将会调节自身尺寸来包住child;
- 如果有alignment,并且父节点提供了bounded限制,那么Container会将自身调整的足够大(在父节点的范围内),然后将child根据alignment调整位置;
- 含有child,但是没有width、height、constraints以及alignment,Container会将父节点的constraints传递给child,并且根据child调整自身。
另外,margin以及padding属性也会影响到布局。
- 继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > StatelessWidget > Container
从继承关系可以看出,Container是一个StatelessWidget。Container并不是一个最基础的widget,它是由一系列的基础widget组合而成。
- 构造方法
Container({
Key key,
this.alignment,
this.padding, //设置内边距
Color color, //用来设置container背景色,如果foregroundDecoration设置的话,可能会遮盖color效果。container背景色和decoration不能同时设置,
Decoration decoration, //边框、圆角、阴影、形状、渐变、背景图像
this.foregroundDecoration, //decoration是背景,foregroundDecoration是前景。设置了foregroundDecoration可能会遮盖child内容,一般半透明遮盖(蒙层)效果使用!
double width,
double height,
BoxConstraints constraints,
this.margin, //设置外边距,container与父边框的距离
this.transform,
this.child, //孩子
}) : assert(margin == null || margin.isNonNegative),
assert(padding == null || padding.isNonNegative),
assert(decoration == null || decoration.debugAssertIsValid()),
assert(constraints == null || constraints.debugAssertIsValid()),
assert(color == null || decoration == null,
'Cannot provide both a color and a decoration\n'
'The color argument is just a shorthand for "decoration: new BoxDecoration(color: color)".'
) - 参数解析
key:Container唯一标识符,用于查找更新。
alignment:控制child的对齐方式,如果container或者container父节点尺寸大于child的尺寸,这个属性设置会起作用,有很多种对齐方式。
padding:decoration内部的空白区域,如果有child的话,child位于padding内部。padding与margin的不同之处在于,padding是包含在content内,而margin则是外部边界,设置点击事件的话,padding区域会响应,而margin区域不会响应。
color:用来设置container背景色,如果foregroundDecoration设置的话,可能会遮盖color效果。
decoration:绘制在child后面的装饰,设置了decoration的话,就不能设置color属性,否则会报错,此时应该在decoration中进行颜色的设置。decoration可以设置边框、背景色、背景图片、圆角等属性,非常实用。
foregroundDecoration:绘制在child前面的装饰。
width:container的宽度,设置为double.infinity可以强制在宽度上撑满,不设置,则根据child和父节点两者一起布局。
height:container的高度,设置为double.infinity可以强制在高度上撑满。
constraints:添加到child上额外的约束条件。
margin:围绕在decoration和child之外的空白区域,不属于内容区域。
transform:设置container的变换矩阵,类型为Matrix4。 对于transform这个属性,一般有过其他平台开发经验的,都大致了解,这种变换,一般不是变换的实际位置,而是变换的绘制效果,也就是说它的点击以及尺寸、间距等都是按照未变换前的。
child:container中的内容widget。
- 介绍:
-
Center
-
介绍:将其子widget居中显示在自身内部的widget。只能有一个chlid,但是可以用container包含好多子child,继承自Align。
用于将其子项与其自身对齐,并根据子级的大小自行调整大小。示意图:
-
构造函数:
Center({
Key key,
double widthFactor, //宽度因子
double heightFactor, //高度因子
Widget child //
}): super(key: key, widthFactor: widthFactor, heightFactor: heightFactor, child: child); -
参数解析:
widthFactor:宽度因子
heightFactor:高度因子
child:子节点/孩子/子组件(1)如果它的尺寸受到约束且[widthFactor]和[heightFactor]为空,则此窗口小部件将尽可能大。
(2)如果维度不受约束且相应的大小因子为null,则窗口小部件将匹配其在该维度中的子项大小(其实就是子view的宽高就是center容器的宽高)。
(3)如果尺寸因子为非null,则此center容器的相应尺寸将是子view的尺寸和尺寸因子的乘积。
例如,如果widthFactor是2.0,那么此小部件的宽度将始终是其子宽度的两倍,并且将子view居中,来看看下图吧。
-
介绍:将其子widget居中显示在自身内部的widget。只能有一个chlid,但是可以用container包含好多子child,继承自Align。
-
Padding
-
介绍:
Padding在Flutter中用的也挺多的,作为一个基础的控件,功能非常单一,给子节点设置padding属性。写过其他端的都了解这个属性,就是设置内边距属性,内边距的空白区域,也是widget的一部分。
Flutter中并没有单独的Margin控件,在Container中有margin属性,看源码关于margin的实现。
if (margin != null)
current = new Padding(padding: margin, child: current);不难看出,Flutter中淡化了margin以及padding的区别,margin实质上也是由Padding实现的。
示意图如下:
-
布局行为
Padding的布局分为两种情况:
- 当child为空的时候,会产生一个宽为left+right,高为top+bottom的区域;
- 当child不为空的时候,Padding会将布局约束传递给child,根据设置的padding属性,缩小child的布局尺寸。然后Padding将自己调整到child设置了padding属性的尺寸,在child周围创建空白区域。
-
继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > SingleChildRenderObjectWidget > Padding
从继承关系可以看出,Padding控件是一个基础控件,不像Container这种组合控件。Container中的margin以及padding属性都是利用Padding控件去实现的。
-
关于SingleChildRenderObjectWidget
SingleChildRenderObjectWidget是RenderObjectWidgets的一个子类,用于限制只能有一个子节点。它只提供child的存储,而不提供实际的更新逻辑。
-
关于RenderObjectWidgets
RenderObjectWidgets为RenderObjectElement提供配置,而RenderObjectElement包含着(wrap)RenderObject,RenderObject则是在应用中提供实际的绘制(rendering)的元素。
-
-
构造函数
Padding({
Key key,
@required this.padding, //内边距
Widget child,
}) : assert(padding != null),
super(key: key, child: child); -
参数含义
padding: 类型为EdgeInsetsGeometry 填充值可以使用EdgeInsets方法,例如:edgeInsets.all(6.0)将容器上下左右填充设置为6.,也可以用EdgeInsets.only方法单独设置某一边的间距
-
介绍:
-
Align
-
介绍:在其他端的开发,Align一般都是当做一个控件的属性,并没有拿出来当做一个单独的控件。Align本身实现的功能并不复杂,设置child的对齐方式,例如居中、居左居右等,并根据child尺寸调节自身尺寸。
Align的布局行为分为两种情况:
当widthFactor和heightFactor为null的时候,当其有限制条件的时候,Align会根据限制条件尽量的扩展自己的尺寸,当没有限制条件的时候,会调整到child的尺寸;
当widthFactor或者heightFactor不为null的时候,Aligin会根据factor属性,扩展自己的尺寸,例如设置widthFactor为2.0的时候,那么,Align的宽度将会是child的两倍。
Align为什么会有这样的布局行为呢?
原因很简单,设置对齐方式的话,如果外层元素尺寸不确定的话,内部的对齐就无法确定。因此,会有宽高因子、根据外层限制扩大到最大尺寸、外层不确定时调整到child尺寸这些行为。- Center继承自Align,只不过是将alignment设置为Alignment.center,其他属性例如widthFactor、heightFactor,布局行为,都与Align完全一样,在这里就不再单独做介绍了。Center源码如下,没有设置alignment属性,是因为Align默认的对齐方式就是居中。
-
构造函数
const Align({
Key key,
this.alignment: Alignment.center,
this.widthFactor, //宽度因子
this.heightFactor, //高度因子
Widget child
}) -
参数的含义
-
alignment:对齐方式,一般会使用系统默认提供的9种方式,但是并不是说只有这9种,例如如下的定义。系统提供的9种方式只是预先定义好的。
/// The top left corner.
static const Alignment topLeft = const Alignment(-1.0, -1.0);Alignment实际上是包含了两个属性的,其中第一个参数,-1.0是左边对齐,1.0是右边对齐,第二个参数,-1.0是顶部对齐,1.0是底部对齐。根据这个规则,我们也可以自定义我们需要的对齐方式,例如
/// 居右高于底部1/4处.
static const Alignment rightHalfBottom = alignment: const Alignment(1.0, 0.5), widthFactor:宽度因子,如果设置的话,Align的宽度就是child的宽度乘以这个值,不能为负数。
heightFactor:高度因子,如果设置的话,Align的高度就是child的高度乘以这个值,不能为负数。
-
-
介绍:在其他端的开发,Align一般都是当做一个控件的属性,并没有拿出来当做一个单独的控件。Align本身实现的功能并不复杂,设置child的对齐方式,例如居中、居左居右等,并根据child尺寸调节自身尺寸。
-
Colum
-
介绍:
Row和Column都是Flex的子类,只是direction参数不同。Column各方面同Row,可参考下面的Row -
构造函数
Column({
Key key,
MainAxisAlignment mainAxisAlignment = MainAxisAlignment.start,
MainAxisSize mainAxisSize = MainAxisSize.max,
CrossAxisAlignment crossAxisAlignment = CrossAxisAlignment.center,
TextDirection textDirection,
VerticalDirection verticalDirection = VerticalDirection.down,
TextBaseline textBaseline,
List<Widget> children = const <Widget>[],
}) : super(
children: children,
key: key,
direction: Axis.vertical,
mainAxisAlignment: mainAxisAlignment,
mainAxisSize: mainAxisSize,
crossAxisAlignment: crossAxisAlignment,
textDirection: textDirection,
verticalDirection: verticalDirection,
textBaseline: textBaseline,
); -
参数的含义
(1)MainAxisSize: 控制自己的布局方式
MainAxisSize.min 默认值,Column和Row自适应children;
MainAxisSize.max Column填充父控件竖屏,Row填充父控件横屏;需要搭配MainAxisAlignment使用才有效果;(2)MainAxisAlignment: 控制子集的对齐方式,Column上下对齐,Row左右对齐MainAxisAlignment.start 默认值,Column靠上,Row靠左;
MainAxisAlignment.center Column,Row居中;
MainAxisAlignment.end Column靠下,Row靠右;
MainAxisAlignment.spaceAround 自己填充,等份分配空间给子集,子集各自居中对齐;
MainAxisAlignment.spaceBetween 自己填充,等份分配空间给子集,子集两侧对齐;
MainAxisAlignment.spaceEvenly 自己填充,等份分配空间给子集,子集同一中线居中对齐;注:当设置MainAxisSize.max时才该值有效果。(3)CrossAxisAlignment: 控制子集各自的对齐方式,Column左右对齐,Row上下对齐CrossAxisAlignment.strech Column中会使子控件宽度调到最大,Row则使子控件高度调到最大
CrossAxisAlignment.start Column中会使子控件向左对齐,Row中会使子控件向上对齐
CrossAxisAlignment.center 默认值,子控件居中
CrossAxisAlignment.end Column中会使子控件向右对齐,Row中会使子控件向下对齐
CrossAxisAlignment.baseline 按文本水平线对齐。与TextBaseline搭配使用(4)TextBaseline:TextBaseline.alphabetic 用于对齐字母字符底部的水平线。
TextBaseline.ideographic 用于对齐表意字符的水平线。(5)VerticalDirection: 控制子控件对齐方式是否相反方式VerticalDirection.down 默认值,按照默认方式
VerticalDirection.up CrossAxisAlignment.start跟CrossAxisAlignment.end对反
-
介绍:
-
Row
-
介绍:
在Flutter中非常常见的一个多子节点控件,将children排列成一行。估计是借鉴了Web中Flex布局,所以很多属性和表现,都跟其相似。但是注意一点,自身不带滚动属性,如果超出了一行,在debug下面则会显示溢出的提示。 - 布局行为:Row的布局有六个步骤,这种布局表现来自Flex(Row和Column的父类):
- 首先按照不受限制的主轴(main axis)约束条件,对flex为null或者为0的child进行布局,然后按照交叉轴( cross axis)的约束,对child进行调整;
- 按照不为空的flex值,将主轴方向上剩余的空间分成相应的几等分;
- 对上述步骤flex值不为空的child,在交叉轴方向进行调整,在主轴方向使用最大约束条件,让其占满步骤2所分得的空间;
- Flex交叉轴的范围取自子节点的最大交叉轴;
- 主轴Flex的值是由mainAxisSize属性决定的,其中MainAxisSize可以取max、min以及具体的value值;
- 每一个child的位置是由mainAxisAlignment以及crossAxisAlignment所决定。
-
介绍:
Row的布局行为表面上看有这么多个步骤,其实也还算是简单,可以完全参照web中的Flex布局,包括主轴、交叉轴等概念。
-
继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > MultiChildRenderObjectWidget > Flex > Row
Row以及Column都是Flex的子类,它们的具体实现也都是由Flex完成,只是参数不同。
-
构造函数
Row({
Key key,
MainAxisAlignment mainAxisAlignment = MainAxisAlignment.start,
MainAxisSize mainAxisSize = MainAxisSize.max,
CrossAxisAlignment crossAxisAlignment = CrossAxisAlignment.center,
TextDirection textDirection,
VerticalDirection verticalDirection = VerticalDirection.down,
TextBaseline textBaseline,
List<Widget> children = const <Widget>[],
}) -
参数的含义
MainAxisAlignment:主轴方向上的对齐方式,会对child的位置起作用,默认是start。
其中MainAxisAlignment枚举值:
- center:将children放置在主轴的中心;
- end:将children放置在主轴的末尾;
- spaceAround:将主轴方向上的空白区域均分,使得children之间的空白区域相等,但是首尾child的空白区域为1/2;
- spaceBetween:将主轴方向上的空白区域均分,使得children之间的空白区域相等,首尾child都靠近首尾,没有间隙;
- spaceEvenly:将主轴方向上的空白区域均分,使得children之间的空白区域相等,包括首尾child;
- start:将children放置在主轴的起点;
其中spaceAround、spaceBetween以及spaceEvenly的区别,就是对待首尾child的方式。其距离首尾的距离分别是空白区域的1/2、0、1。
MainAxisSize:在主轴方向占有空间的值,默认是max。
MainAxisSize的取值有两种:
- max:根据传入的布局约束条件,最大化主轴方向的可用空间;
- min:与max相反,是最小化主轴方向的可用空间;
CrossAxisAlignment:children在交叉轴方向的对齐方式,与MainAxisAlignment略有不同。
CrossAxisAlignment枚举值有如下几种:
- baseline:在交叉轴方向,使得children的baseline对齐;
- center:children在交叉轴上居中展示;
- end:children在交叉轴上末尾展示;
- start:children在交叉轴上起点处展示;
- stretch:让children填满交叉轴方向;
TextDirection:阿拉伯语系的兼容设置,一般无需处理。
VerticalDirection:定义了children摆放顺序,默认是down。
VerticalDirection枚举值有两种:
- down:从top到bottom进行布局;
- up:从bottom到top进行布局。
top对应Row以及Column的话,就是左边和顶部,bottom的话,则是右边和底部。
TextBaseline:使用的TextBaseline的方式,有两种,前面已经介绍过。
-
介绍:
Expanded
组件可以使Row
、Column
、Fiex
等子组件在其主轴上方向展开并填充可用的空间,这里注意:Expanded
组件必须用在Row
、Column
、Fiex
内,并且从Expanded
到封装它的Row
、Column
、Flex
的路径必须只包括StatelessWidgets
或者StatefulWidgets
(不能是其他类型的组件,像RenderObjectWidget
,它是渲染对象,不再改变尺寸,因此Expanded
不能放进RenderObjectWidget
),示意图如下:注意一点:在Row中使用Expanded的时候,无法指定Expanded中的子组件的宽度width,但可以指定其高度height。同理,在Column中使用Expanded的时候,无法指定Expanded中的子组件的高度height,可以指定宽度width。
- 构造函数
const Expanded({
Key key,
int flex = ,
@required Widget child,
}) : super(key: key, flex: flex, fit: FlexFit.tight, child: child);
- 介绍:
按照其官方的介绍,它主要做了两件事情,缩放(Scale)以及位置调整(Position)。
FittedBox会在自己的尺寸范围内缩放并且调整child位置,使得child适合其尺寸。做过移动端的,可能会联想到ImageView控件,它是将图片在其范围内,按照规则,进行缩放位置调整。FittedBox跟ImageView是有些类似的,可以猜测出,它肯定有一个类似于ScaleType的属性。
- 布局行为:
FittedBox的布局行为还算简单,官方没有给出说明,我在这里简单说一下。由于FittedBox是一个容器,需要让其child在其范围内缩放,因此其布局行为分两种情况:
- 如果外部有约束的话,按照外部约束调整自身尺寸,然后缩放调整child,按照指定的条件进行布局;
- 如果没有外部约束条件,则跟child尺寸一致,指定的缩放以及位置属性将不起作用。
- 继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > SingleChildRenderObjectWidget > FittedBox
- 构造函数
const FittedBox({
Key key,
this.fit: BoxFit.contain,
this.alignment: Alignment.center,
Widget child,
}) - 参数的含义
fit:缩放的方式,默认的属性是
BoxFit.contain
,child在FittedBox范围内,尽可能的大,但是不超出其尺寸。这里注意一点,contain是保持着child宽高比的大前提下,尽可能的填满,一般情况下,宽度或者高度达到最大值时,就会停止缩放。alignment:对齐方式,默认的属性是
Alignment.center
,居中显示child。 - 使用场景
FittedBox在目前的项目中还未用到过。对于需要缩放调整位置处理的,一般都是图片。笔者一般都是使用Container中的decoration属性去实现相应的效果。对于其他控件需要缩放以及调整位置的,目前还没有遇到使用场景,大家只需要知道有这么一个控件,可以实现这个功能即可。
- 介绍:
Stack可以类比web中的absolute,绝对布局。绝对布局一般在移动端开发中用的较少,但是在某些场景下,还是有其作用。当然,能用Stack绝对布局完成的,用其他控件组合也都能实现。
布局行为
Stack的布局行为,根据child是positioned还是non-positioned来区分。
- 对于positioned的子节点,它们的位置会根据所设置的top、bottom、right以及left属性来确定,这几个值都是相对于Stack的左上角;
- 对于non-positioned的子节点,它们会根据Stack的aligment来设置位置。
对于绘制child的顺序,则是第一个child被绘制在最底端,后面的依次在前一个child的上面,类似于web中的z-index。如果想调整显示的顺序,则可以通过摆放child的顺序来进行。
- 继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > MultiChildRenderObjectWidget > Stack
- 构造函数
Stack({
Key key,
this.alignment = AlignmentDirectional.topStart,
this.textDirection,
this.fit = StackFit.loose,
this.overflow = Overflow.clip,
List<Widget> children = const <Widget>[],
})
参数的含义
alignment:对齐方式,默认是左上角(topStart)。
textDirection:文本的方向,绝大部分不需要处理。
fit:定义如何设置non-positioned节点尺寸,默认为loose。
其中StackFit有如下几种:
- loose:子节点宽松的取值,可以从min到max的尺寸;
- expand:子节点尽可能的占用空间,取max尺寸;
- passthrough:不改变子节点的约束条件。
overflow:超过的部分是否裁剪掉(clipped)。
-
介绍:
IndexedStack继承自Stack,它的作用是显示第index个child,其他child都是不可见的。所以IndexedStack的尺寸永远是跟最大的子节点尺寸一致。 -
构造函数
IndexedStack({
Key key,
AlignmentGeometry alignment = AlignmentDirectional.topStart,
TextDirection textDirection,
StackFit sizing = StackFit.loose,
this.index = ,
List<Widget> children = const <Widget>[],
}) : super(key: key, alignment: alignment, textDirection: textDirection, fit: sizing, children: children); - 参数的含义
- 介绍:
OverflowBox这个控件,允许child超出parent的范围显示,当然不用这个控件,也有很多种方式实现类似的效果。 - 布局行为
当OverflowBox的最大尺寸大于child的时候,child可以完整显示,当其小于child的时候,则以最大尺寸为基准,当然,这个尺寸都是可以突破父节点的。最后加上对齐方式,完成布局。 - 继承关系
Object > Diagnosticable > DiagnosticableTree > Widget > RenderObjectWidget > SingleChildRenderObjectWidget > OverflowBox
- 构造函数
const OverflowBox({
Key key,
this.alignment = Alignment.center,
this.minWidth,
this.maxWidth,
this.minHeight,
this.maxHeight,
Widget child,
}) - 参数的含义
alignment:对齐方式。
minWidth:允许child的最小宽度。如果child宽度小于这个值,则按照最小宽度进行显示。
maxWidth:允许child的最大宽度。如果child宽度大于这个值,则按照最大宽度进行展示。
minHeight:允许child的最小高度。如果child高度小于这个值,则按照最小高度进行显示。
maxHeight:允许child的最大高度。如果child高度大于这个值,则按照最大高度进行展示。
其中,最小以及最大宽高度,如果为null的时候,就取父节点的constraint代替。
- 使用场景
有时候设计图上出现的角标,会超出整个模块,可以使用OverflowBox控件。但我们应该知道,不使用这种控件,也可以完成布局,在最外面包一层,也能达到一样的效果。具体实施起来哪个比较方便,同学们自行取舍。
三,常用示例
-
Container
/**
* Container 组件
*
*/
class MyContainer extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Center(
child:new Container(
child: new Text('Hellow,Flutter——Container'),
//定位
padding: const EdgeInsets.all(8.0),
alignment: Alignment.center,
transform: new Matrix4.rotationZ(0.3),
//绘制
decoration: new BoxDecoration(
//边框
border: new Border.all(
color: Colors.red,
width: 5.0
),
//背景颜色
color: Colors.grey,
//圆角
borderRadius: new BorderRadius.all(new Radius.circular(20.0)),
image: new DecorationImage(
image: new NetworkImage('http://h.hiphotos.baidu.com/zhidao/wh%3D450%2C600/sign=0d023672312ac65c67506e77cec29e27/9f2f070828381f30dea167bbad014c086e06f06c.jpg'),
centerSlice: new Rect.fromLTRB(270.0, 280.0, 1360.0, 730.0),
),
),
//尺寸
width: ,
height: ,
) ,
) ;
}
}效果图:
源码解析:decoration = decoration ?? (color != null ? new BoxDecoration(color: color) : null),
可以看出,对于颜色的设置,最后都是转换为decoration来进行绘制的。如果同时包含decoration和color两种属性,则会报错。
@override
Widget build(BuildContext context) {
Widget current = child; if (child == null && (constraints == null || !constraints.isTight)) {
current = new LimitedBox(
maxWidth: 0.0,
maxHeight: 0.0,
child: new ConstrainedBox(constraints: const BoxConstraints.expand())
);
} if (alignment != null)
current = new Align(alignment: alignment, child: current); final EdgeInsetsGeometry effectivePadding = _paddingIncludingDecoration;
if (effectivePadding != null)
current = new Padding(padding: effectivePadding, child: current); if (decoration != null)
current = new DecoratedBox(decoration: decoration, child: current); if (foregroundDecoration != null) {
current = new DecoratedBox(
decoration: foregroundDecoration,
position: DecorationPosition.foreground,
child: current
);
} if (constraints != null)
current = new ConstrainedBox(constraints: constraints, child: current); if (margin != null)
current = new Padding(padding: margin, child: current); if (transform != null)
current = new Transform(transform: transform, child: current); return current;
}Container的build函数不长,绘制也是一个线性的判断的过程,一层一层的包裹着widget,去实现不同的样式。
最里层的是child,如果为空或者其他约束条件,则最里层包含的为一个LimitedBox,然后依次是Align、Padding、DecoratedBox、前景DecoratedBox、ConstrainedBox、Padding(实现margin效果)、Transform。
Container的源码本身并不复杂,复杂的是它的各种布局表现。我们谨记住一点,如果内部不设置约束,则按照父节点尽可能的扩大,如果内部有约束,则按照内部来。
-
Center
/**
* Center
*/ class MyCenter extends StatelessWidget {
//不用center组件
Widget text = new Text(
'不包含center'
);
//包含center组件
Widget center = new Center(
child: new Text(
'包含center组件'
),
); @override
Widget build(BuildContext context) {
// TODO: implement build
return text;
}
}效果图:
源码解析:
Center继承自Align,只不过是将alignment设置为Alignment.center,其他属性例如widthFactor、heightFactor,布局行为,都与Align完全一样。Center源码如下,没有设置alignment属性,是因为Align默认的对齐方式就是居中。
class Center extends Align {
/// Creates a widget that centers its child.
const Center({ Key key, double widthFactor, double heightFactor, Widget child })
: super(key: key, widthFactor: widthFactor, heightFactor: heightFactor, child: child);
} -
Padding
/**
* Padding
*/ class MyPadding extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Padding(
padding: new EdgeInsets.all(8.0),
child: const Card(
child: const Text('Flutter布局组件--Padding'),
),
);
}
}效果图
源码解析:
@override
RenderPadding createRenderObject(BuildContext context) {
return new RenderPadding(
padding: padding,
textDirection: Directionality.of(context),
);
}Padding的创建函数,实际上是由RenderPadding来进行的。
关于RenderPadding的实际布局表现,当child为null的时候:
if (child == null) {
size = constraints.constrain(new Size(
_resolvedPadding.left + _resolvedPadding.right,
_resolvedPadding.top + _resolvedPadding.bottom
));
return;
}返回一个宽为_resolvedPadding.left+_resolvedPadding.right,高为_resolvedPadding.top+_resolvedPadding.bottom的区域。
当child不为null的时候,经历了三个过程,即调整child尺寸、调整child位置以及调整Padding尺寸,最终达到实际的布局效果。
// 调整child尺寸
final BoxConstraints innerConstraints = constraints.deflate(_resolvedPadding);
child.layout(innerConstraints, parentUsesSize: true); // 调整child位置
final BoxParentData childParentData = child.parentData;
childParentData.offset = new Offset(_resolvedPadding.left, _resolvedPadding.top); // 调整Padding尺寸
size = constraints.constrain(new Size(
_resolvedPadding.left + child.size.width + _resolvedPadding.right,
_resolvedPadding.top + child.size.height + _resolvedPadding.bottom
));到此处,上面介绍的padding布局行为就解释的通了。
-
Align
/**
* Align
* 设置一个宽高为child两倍区域的Align,其child处在正中间。
*/
class MyAlign extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Align(
alignment: Alignment.center,
widthFactor: 2.0,
heightFactor: 2.0,
child: new Text("flutter布局组件之Align"),
);
}
}效果图:
源码解析:
@override
RenderPositionedBox createRenderObject(BuildContext context) {
return new RenderPositionedBox(
alignment: alignment,
widthFactor: widthFactor,
heightFactor: heightFactor,
textDirection: Directionality.of(context),
);
}Align的实际构造调用的是RenderPositionedBox。
RenderPositionedBox的布局表现如下:
// 根据_widthFactor、_heightFactor以及限制因素来确定宽高
final bool shrinkWrapWidth = _widthFactor != null || constraints.maxWidth == double.infinity;
final bool shrinkWrapHeight = _heightFactor != null || constraints.maxHeight == double.infinity; if (child != null) {
// 如果child不为null,则根据规则设置Align的宽高,如果需要缩放,则根据_widthFactor是否为null来进行缩放,如果不需要,则尽量扩展。
child.layout(constraints.loosen(), parentUsesSize: true);
size = constraints.constrain(new Size(shrinkWrapWidth ? child.size.width * (_widthFactor ?? 1.0) : double.infinity,
shrinkWrapHeight ? child.size.height * (_heightFactor ?? 1.0) : double.infinity));
alignChild();
} else {
// 如果child为null,如果需要缩放,则变为0,否则就尽量扩展
size = constraints.constrain(new Size(shrinkWrapWidth ? 0.0 : double.infinity,
shrinkWrapHeight ? 0.0 : double.infinity));
} -
Colum
/**
* Column
* 使用Expanded控件,将一行的宽度分成四个等分,第一、三个child占1/4的区域,第二个child占1/2区域,由flex属性控制。
*/ class MyColumn extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Column(
children: <Widget>[
new Expanded(
child: new Container(
color: Colors.red,
padding: EdgeInsets.all(5.0),
),
flex: ,
),
new Expanded(
child: new Container(
color: Colors.yellow,
padding: EdgeInsets.all(5.0),
),
flex: ,
),
new Expanded(
child: new Container(
color: Colors.blue,
padding: EdgeInsets.all(5.0),
),
flex: ,
)
],
);
}
}效果图:
源码解析:
和Row类似,参考Row -
Row
/**
* Row
* 使用Expanded控件,将水平方向一行的宽度分成四个等分,第一、三个child占1/4的区域,第二个child占1/2区域,由flex属性控制。
*/
class MyRow extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Row(
children: <Widget>[
new Expanded(
flex: ,
child: new Container(
color: Colors.red,
padding: EdgeInsets.all(5.0),
),
),
new Expanded(
flex: ,
child: new Container(
color: Colors.yellow,
padding: EdgeInsets.all(5.0),
) ,
),
new Expanded(
flex: ,
child: new Container(
color: Colors.blue,
padding: EdgeInsets.all(5.0),
),
)
],
);
}
}效果图:
原理图:
Row以及Column的源代码就一个构造函数,具体的实现全部在它们的父类Flex中。
关于Flex的构造函数
Flex({
Key key,
@required this.direction,
this.mainAxisAlignment = MainAxisAlignment.start,
this.mainAxisSize = MainAxisSize.max,
this.crossAxisAlignment = CrossAxisAlignment.center,
this.textDirection,
this.verticalDirection = VerticalDirection.down,
this.textBaseline,
List<Widget> children = const <Widget>[],
})可以看出,Flex的构造函数就比Row和Column的多了一个参数。Row跟Column的区别,正是这个direction参数的不同。当为Axis.horizontal的时候,则是Row,当为Axis.vertical的时候,则是Column。
我们来看下Flex的布局函数,由于布局函数比较多,因此分段来讲解:
while (child != null) {
final FlexParentData childParentData = child.parentData;
totalChildren++;
final int flex = _getFlex(child);
if (flex > ) {
totalFlex += childParentData.flex;
lastFlexChild = child;
} else {
BoxConstraints innerConstraints;
if (crossAxisAlignment == CrossAxisAlignment.stretch) {
switch (_direction) {
case Axis.horizontal:
innerConstraints = new BoxConstraints(minHeight: constraints.maxHeight,
maxHeight: constraints.maxHeight);
break;
case Axis.vertical:
innerConstraints = new BoxConstraints(minWidth: constraints.maxWidth,
maxWidth: constraints.maxWidth);
break;
}
} else {
switch (_direction) {
case Axis.horizontal:
innerConstraints = new BoxConstraints(maxHeight: constraints.maxHeight);
break;
case Axis.vertical:
innerConstraints = new BoxConstraints(maxWidth: constraints.maxWidth);
break;
}
}
child.layout(innerConstraints, parentUsesSize: true);
allocatedSize += _getMainSize(child);
crossSize = math.max(crossSize, _getCrossSize(child));
}
child = childParentData.nextSibling;
}上面这段代码,我把中间的一些assert以及错误信息之类的代码剔除了,不影响实际的理解。
在布局的开始,首先会遍历一遍child,遍历的作用有两点:
对于存在flex值的child,计算出flex的和,找到最后一个包含flex值的child。找到这个child,是因为主轴对齐方式,可能会对它的位置做调整,需要找出来;
对于不包含flex的child,根据交叉轴方向的设置,对child进行调整。final double freeSpace = math.max(0.0, (canFlex ? maxMainSize : 0.0) - allocatedSize);
if (totalFlex > || crossAxisAlignment == CrossAxisAlignment.baseline) {
final double spacePerFlex = canFlex && totalFlex > ? (freeSpace / totalFlex) : double.nan;
child = firstChild;
while (child != null) {
final int flex = _getFlex(child);
if (flex > ) {
final double maxChildExtent = canFlex ? (child == lastFlexChild ? (freeSpace - allocatedFlexSpace) : spacePerFlex * flex) : double.infinity;
double minChildExtent;
switch (_getFit(child)) {
case FlexFit.tight:
assert(maxChildExtent < double.infinity);
minChildExtent = maxChildExtent;
break;
case FlexFit.loose:
minChildExtent = 0.0;
break;
}
BoxConstraints innerConstraints;
if (crossAxisAlignment == CrossAxisAlignment.stretch) {
switch (_direction) {
case Axis.horizontal:
innerConstraints = new BoxConstraints(minWidth: minChildExtent,
maxWidth: maxChildExtent,
minHeight: constraints.maxHeight,
maxHeight: constraints.maxHeight);
break;
case Axis.vertical:
innerConstraints = new BoxConstraints(minWidth: constraints.maxWidth,
maxWidth: constraints.maxWidth,
minHeight: minChildExtent,
maxHeight: maxChildExtent);
break;
}
} else {
switch (_direction) {
case Axis.horizontal:
innerConstraints = new BoxConstraints(minWidth: minChildExtent,
maxWidth: maxChildExtent,
maxHeight: constraints.maxHeight);
break;
case Axis.vertical:
innerConstraints = new BoxConstraints(maxWidth: constraints.maxWidth,
minHeight: minChildExtent,
maxHeight: maxChildExtent);
break;
}
}
child.layout(innerConstraints, parentUsesSize: true);
final double childSize = _getMainSize(child);
allocatedSize += childSize;
allocatedFlexSpace += maxChildExtent;
crossSize = math.max(crossSize, _getCrossSize(child));
}
if (crossAxisAlignment == CrossAxisAlignment.baseline) {
final double distance = child.getDistanceToBaseline(textBaseline, onlyReal: true);
if (distance != null)
maxBaselineDistance = math.max(maxBaselineDistance, distance);
}
final FlexParentData childParentData = child.parentData;
child = childParentData.nextSibling;
}
}上面的代码段所做的事情也有两点:
(1)为包含flex的child分配剩余的空间
(2)对于每份flex所对应的空间大小,它的计算方式如下:final double freeSpace = math.max(0.0, (canFlex ? maxMainSize : 0.0) - allocatedSize);
final double spacePerFlex = canFlex && totalFlex > 0 ? (freeSpace / totalFlex) : double.nan;
其中,allocatedSize是不包含flex所占用的空间。当每一份flex所占用的空间计算出来后,则根据交叉轴的设置,对包含flex的child进行调整。计算出baseline值
如果交叉轴的对齐方式为baseline,则计算出最大的baseline值,将其作为整体的baseline值。switch (_mainAxisAlignment) {
case MainAxisAlignment.start:
leadingSpace = 0.0;
betweenSpace = 0.0;
break;
case MainAxisAlignment.end:
leadingSpace = remainingSpace;
betweenSpace = 0.0;
break;
case MainAxisAlignment.center:
leadingSpace = remainingSpace / 2.0;
betweenSpace = 0.0;
break;
case MainAxisAlignment.spaceBetween:
leadingSpace = 0.0;
betweenSpace = totalChildren > ? remainingSpace / (totalChildren - ) : 0.0;
break;
case MainAxisAlignment.spaceAround:
betweenSpace = totalChildren > ? remainingSpace / totalChildren : 0.0;
leadingSpace = betweenSpace / 2.0;
break;
case MainAxisAlignment.spaceEvenly:
betweenSpace = totalChildren > ? remainingSpace / (totalChildren + ) : 0.0;
leadingSpace = betweenSpace;
break;
}然后,就是将child在主轴方向上按照设置的对齐方式,进行位置调整。上面代码就是计算前后空白区域值的过程,可以看出spaceBetween、spaceAround以及spaceEvenly的差别。
double childMainPosition = flipMainAxis ? actualSize - leadingSpace : leadingSpace;
child = firstChild;
while (child != null) {
final FlexParentData childParentData = child.parentData;
double childCrossPosition;
switch (_crossAxisAlignment) {
case CrossAxisAlignment.start:
case CrossAxisAlignment.end:
childCrossPosition = _startIsTopLeft(flipAxis(direction), textDirection, verticalDirection)
== (_crossAxisAlignment == CrossAxisAlignment.start)
? 0.0
: crossSize - _getCrossSize(child);
break;
case CrossAxisAlignment.center:
childCrossPosition = crossSize / 2.0 - _getCrossSize(child) / 2.0;
break;
case CrossAxisAlignment.stretch:
childCrossPosition = 0.0;
break;
case CrossAxisAlignment.baseline:
childCrossPosition = 0.0;
if (_direction == Axis.horizontal) {
assert(textBaseline != null);
final double distance = child.getDistanceToBaseline(textBaseline, onlyReal: true);
if (distance != null)
childCrossPosition = maxBaselineDistance - distance;
}
break;
}
if (flipMainAxis)
childMainPosition -= _getMainSize(child);
switch (_direction) {
case Axis.horizontal:
childParentData.offset = new Offset(childMainPosition, childCrossPosition);
break;
case Axis.vertical:
childParentData.offset = new Offset(childCrossPosition, childMainPosition);
break;
}
if (flipMainAxis) {
childMainPosition -= betweenSpace;
} else {
childMainPosition += _getMainSize(child) + betweenSpace;
}
child = childParentData.nextSibling;
}最后,则是根据交叉轴的对齐方式设置,对child进行位置调整,到此,布局结束。
我们可以顺一下整体的流程:
计算出flex的总和,并找到最后一个设置了flex的child;
对不包含flex的child,根据交叉轴对齐方式,对齐进行调整,并计算出主轴方向上所占区域大小;
计算出每一份flex所占用的空间,并根据交叉轴对齐方式,对包含flex的child进行调整;
如果交叉轴设置为baseline对齐,则计算出整体的baseline值;
按照主轴对齐方式,对child进行调整;
最后,根据交叉轴对齐方式,对所有child位置进行调整,完成布局。 - Expanded
class MyHomePage extends StatelessWidget {
....
body:new RowWidget(),
...
}
class RowWidget extends StatelessWidget{
@override
Widget build(BuildContext context){
return Row(
children: <Widget>[
new RaisedButton(
onPressed: (){ },
color:Colors.green,
child:new Text('绿色按钮1')
),
new Expanded(
child:new RaisedButton(
onPressed: (){ },
color:Colors.yellow,
child:new Text('黄色按钮2')
),
),
new RaisedButton(
onPressed:(){ },
color:Colors.red,
child:new Text('黑色按钮3')),
],
);
}
}效果图:
- FittedBox
/**
* Fitted Box
* 加入Container是为了加颜色显示两个区域,读者可以试着修改fit以及alignment查看其不同的效果。
* 类似于其它移动端的imageView的contentView属性
*/ class MyFittedBox extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Container(
width: 300.0,
height: 300.0,
color: Colors.blue,
child: new FittedBox(
fit: BoxFit.contain,
alignment: Alignment.topLeft,
child: new Container(
color: Colors.red,
child: new Text('FittedBox'),
),
),
);
}
}效果图:
源码解析:@override
RenderFittedBox createRenderObject(BuildContext context) {
return new RenderFittedBox(
fit: fit,
alignment: alignment,
textDirection: Directionality.of(context),
);
}FittedBox具体实现是由RenderFittedBox进行的。不知道读者有没有发现,目前的一些基础控件,继承自RenderObjectWidget的,widget本身都只是存储了一些配置信息,真正的绘制渲染,则是由内部的createRenderObject所调用的RenderObject去实现的。
RenderFittedBox具体的布局代码如下:
if (child != null) {
child.layout(const BoxConstraints(), parentUsesSize: true);
// 如果child不为null,则按照child的尺寸比率缩放child的尺寸
size = constraints.constrainSizeAndAttemptToPreserveAspectRatio(child.size);
_clearPaintData();
} else {
// 如果child为null,则按照最小尺寸进行布局
size = constraints.smallest;
} -
Stack
/**
* Stack
*/ class MyStack extends StatelessWidget {
@override
Widget build(BuildContext context) {
// TODO: implement build
return new Stack(
alignment: const Alignment(0.6, 0.6),
children: <Widget>[
new CircleAvatar(
backgroundImage: AssetImage('a'),
radius: 100.0,
),
new Container(
decoration: BoxDecoration(
color: Colors.black45,
),
child: new Text(
'FLutter-Statck',
style:new TextStyle(
fontSize:20.0,
fontWeight:FontWeight.bold,
color:Colors.white
),
),
)
],
);
}
}效果图:
源码解析:
(1)Stack的布局代码有些长,在此分段进行讲解。
如果不包含子节点,则尺寸尽可能大。
if (childCount == ) {
size = constraints.biggest;
return;
}
(2)根据fit属性,设置non-positioned子节点约束条件。
switch (fit) {
case StackFit.loose:
nonPositionedConstraints = constraints.loosen();
break;
case StackFit.expand:
nonPositionedConstraints = new BoxConstraints.tight(constraints.biggest);
break;
case StackFit.passthrough:
nonPositionedConstraints = constraints;
break;
}
(3)对non-positioned子节点进行布局。
RenderBox child = firstChild;
while (child != null) {
final StackParentData childParentData = child.parentData;
if (!childParentData.isPositioned) {
hasNonPositionedChildren = true;
child.layout(nonPositionedConstraints, parentUsesSize: true);
final Size childSize = child.size;
width = math.max(width, childSize.width);
height = math.max(height, childSize.height);
}
child = childParentData.nextSibling;
}
(4).根据是否包含positioned子节点,对stack进行尺寸调整。
if (hasNonPositionedChildren) {
size = new Size(width, height);
} else {
size = constraints.biggest;
}
(5).最后对子节点位置的调整,这个调整过程中,则根据alignment、positioned节点的绝对位置等信息,对子节点进行布局。
第一步是根据positioned的绝对位置,计算出约束条件后进行布局。
if (childParentData.left != null && childParentData.right != null)
childConstraints = childConstraints.tighten(width: size.width - childParentData.right - childParentData.left);
else if (childParentData.width != null)
childConstraints = childConstraints.tighten(width: childParentData.width); if (childParentData.top != null && childParentData.bottom != null)
childConstraints = childConstraints.tighten(height: size.height - childParentData.bottom - childParentData.top);
else if (childParentData.height != null)
childConstraints = childConstraints.tighten(height: childParentData.height); child.layout(childConstraints, parentUsesSize: true);
第二步则是位置的调整,其中坐标的计算如下:
double x;
if (childParentData.left != null) {
x = childParentData.left;
} else if (childParentData.right != null) {
x = size.width - childParentData.right - child.size.width;
} else {
x = _resolvedAlignment.alongOffset(size - child.size).dx;
} if (x < 0.0 || x + child.size.width > size.width)
_hasVisualOverflow = true; double y;
if (childParentData.top != null) {
y = childParentData.top;
} else if (childParentData.bottom != null) {
y = size.height - childParentData.bottom - child.size.height;
} else {
y = _resolvedAlignment.alongOffset(size - child.size).dy;
} if (y < 0.0 || y + child.size.height > size.height)
_hasVisualOverflow = true; childParentData.offset = new Offset(x, y);
-
IndexedStack
class MyIndexedStack extends StatelessWidget {
@override
Widget build(BuildContext context) {
return new Container(
color: Colors.yellow,
child: IndexedStack(
index: ,
alignment: const Alignment(0.6, 0.6),
children: <Widget>[
new CircleAvatar(
backgroundImage: AssetImage(''),
radius: 100.0,
),
new Container(
decoration: new BoxDecoration(
color: Colors.black45,
),
child: new Text(
'Flutter--Demo',
style:new TextStyle(
fontSize: 20.0,
fontWeight: FontWeight.bold,
color: Colors.white,
)
),
)
],
),
);
}
}效果图:
源码分析:
其绘制代码很简单,因为继承自Stack,布局方面表现基本一致,不同之处在于其绘制的时候,只是将第Index个child进行了绘制。
@override
void paintStack(PaintingContext context, Offset offset) {
if (firstChild == null || index == null) return;
final RenderBox child = _childAtIndex();
final StackParentData childParentData = child.parentData;
context.paintChild(child, childParentData.offset + offset);
} -
OverflowBox
Container(
color: Colors.green,
width: 200.0,
height: 200.0,
padding: const EdgeInsets.all(5.0),
child: OverflowBox(
alignment: Alignment.topLeft,
maxWidth: 300.0,
maxHeight: 500.0,
child: Container(
color: Color(0x33FF00FF),
width: 400.0,
height: 400.0,
),
),
)效果图:
源码解析:
OverflowBox的源码很简单,我们先来看一下布局代码:
if (child != null) {
child.layout(_getInnerConstraints(constraints), parentUsesSize: true);
alignChild();
}如果child不为null,child则会按照计算出的constraints进行尺寸的调整,然后对齐。
至于constraints的计算,则还是上面的逻辑,如果设置的有的话,就取这个值,如果没有的话,就拿父节点的。
四,参考
《Flutter学习之认知基础组件》
《Flutter布局》