参考来自: http://www.weixueyuan.net/view/6321.html ; http://www.yiibai.com/java/java-generics-tutorial.html
我们知道,使用变量之前要定义,定义一个变量时必须要指明它的数据类型,什么样的数据类型赋给什么样的值。
假如我们现在要定义一个类来表示坐标,要求坐标的数据类型可以是整数、小数和字符串,例如:
- x = 10、y = 10
- x = 12.88、y = 129.65
- x = "东京180度"、y = "北纬210度"
针对不同的数据类型,除了借助方法重载,还可以借助自动装箱和向上转型。我们知道,基本数据类型可以自动装箱,被转换成对应的包装类;Object 是所有类的祖先类,任何一个类的实例都可以向上转型为 Object 类型,例如:
- int --> Integer --> Object
- double -->Double --> Object
- String --> Object
这样,只需要定义一个方法,就可以接收所有类型的数据。请看下面的代码:
上面的代码中,生成坐标时不会有任何问题,但是取出坐标时,要向下转型,在 Java多态对象的类型转换 一文中我们讲到,向下转型存在着风险,而且编译期间不容易发现,只有在运行期间才会抛出异常,所以要尽量避免使用向下转型。运行上面的代码,第12行会抛出 java.lang.ClassCastException 异常。
- public class Demo {
- public static void main(String[] args){
- Point p = new Point();
- p.setX(10); // int -> Integer -> Object
- p.setY(20);
- int x = (Integer)p.getX(); // 必须向下转型
- int y = (Integer)p.getY();
- System.out.println("This point is:" + x + ", " + y);
- p.setX(25.4); // double -> Integer -> Object
- p.setY("东京180度");
- double m = (Double)p.getX(); // 必须向下转型
- double n = (Double)p.getY(); // 运行期间抛出异常
- System.out.println("This point is:" + m + ", " + n);
- }
- }
- class Point{
- Object x = 0;
- Object y = 0;
- public Object getX() {
- return x;
- }
- public void setX(Object x) {
- this.x = x;
- }
- public Object getY() {
- return y;
- }
- public void setY(Object y) {
- this.y = y;
- }
- }
那么,有没有更好的办法,既可以不使用重载(有重复代码),又能把风险降到最低呢?
有,可以使用 泛型类(Java Class) ,它可以接受任意类型的数据。所谓“泛型”,就是“宽泛的数据类型”,任意的数据类型。
更改上面的代码,使用泛型类:
运行结果:
- public class Demo {
- public static void main(String[] args){
- // 实例化泛型类
- Point<Integer, Integer> p1 = new Point<Integer, Integer>();
- p1.setX(10);
- p1.setY(20);
- int x = p1.getX();
- int y = p1.getY();
- System.out.println("This point is:" + x + ", " + y);
- Point<Double, String> p2 = new Point<Double, String>();
- p2.setX(25.4);
- p2.setY("东京180度");
- double m = p2.getX();
- String n = p2.getY();
- System.out.println("This point is:" + m + ", " + n);
- }
- }
- // 定义泛型类
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- }
This point is:10, 20
This point is:25.4, 东京180度
与普通类的定义相比,上面的代码在类名后面多出了 <T1, T2>,T1, T2 是自定义的标识符,也是参数,用来传递数据的类型,而不是数据的值,我们称之为 类型参数 。在泛型中,不但数据的值可以通过参数传递,数据的类型也可以通过参数传递。T1, T2 只是数据类型的占位符,运行时会被替换为真正的数据类型。
传值参数(我们通常所说的参数)由小括号包围,如 (int x, double y),类型参数(泛型参数)由尖括号包围,多个参数由逗号分隔,如 <T> 或 <T, E>。
类型参数需要在类名后面给出。一旦给出了类型参数,就可以在类中使用了。类型参数必须是一个合法的标识符,习惯上使用单个大写字母,通常情况下,K 表示键,V 表示值,E 表示异常或错误,T 表示一般意义上的数据类型。
泛型类在实例化时必须指出具体的类型,也就是向类型参数传值,格式为:
className variable<dataType1, dataType2> = new className<dataType1, dataType2>();
也可以省略等号右边的数据类型,但是会产生警告,即:
className variable<dataType1, dataType2> = new className();
因为在使用泛型类时指明了数据类型,赋给其他类型的值会抛出异常,既不需要向下转型,也没有潜在的风险,比本文一开始介绍的自动装箱和向上转型要更加实用。
注意:
- 泛型是 Java 1.5 的新增特性,它以C++模板为参照,本质是参数化类型(Parameterized Type)的应用。
- 类型参数只能用来表示引用类型,不能用来表示基本类型,如 int、double、char 等。但是传递基本类型不会报错,因为它们会自动装箱成对应的包装类。
泛型方法
除了定义泛型类,还可以定义泛型方法,例如,定义一个打印坐标的泛型方法:运行结果:
- public class Demo {
- public static void main(String[] args){
- // 实例化泛型类
- Point<Integer, Integer> p1 = new Point<Integer, Integer>();
- p1.setX(10);
- p1.setY(20);
- p1.printPoint(p1.getX(), p1.getY());
- Point<Double, String> p2 = new Point<Double, String>();
- p2.setX(25.4);
- p2.setY("东京180度");
- p2.printPoint(p2.getX(), p2.getY());
- }
- }
- // 定义泛型类
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- // 定义泛型方法
- public <T1, T2> void printPoint(T1 x, T2 y){
- T1 m = x;
- T2 n = y;
- System.out.println("This point is:" + m + ", " + n);
- }
- }
This point is:10, 20
This point is:25.4, 东京180度
上面的代码中定义了一个泛型方法 printPoint(),既有普通参数,也有类型参数,类型参数需要放在修饰符后面、返回值类型前面。一旦定义了类型参数,就可以在参数列表、方法体和返回值类型中使用了。
与使用泛型类不同,使用泛型方法时不必指明参数类型,编译器会根据传递的参数自动查找出具体的类型。泛型方法除了定义不同,调用就像普通方法一样。
注意:泛型方法与泛型类没有必然的联系,泛型方法有自己的类型参数,在普通类中也可以定义泛型方法。泛型方法 printPoint() 中的类型参数 T1, T2 与泛型类 Point 中的 T1, T2 没有必然的联系,也可以使用其他的标识符代替:
- public static <V1, V2> void printPoint(V1 x, V2 y){
- V1 m = x;
- V2 n = y;
- System.out.println("This point is:" + m + ", " + n);
- }
泛型接口
在Java中也可以定义泛型接口,这里不再赘述,仅仅给出示例代码:运行结果:
- public class Demo {
- public static void main(String arsg[]) {
- Info<String> obj = new InfoImp<String>("www.weixueyuan.net");
- System.out.println("Length Of String: " + obj.getVar().length());
- }
- }
- //定义泛型接口
- interface Info<T> {
- public T getVar();
- }
- //实现接口
- class InfoImp<T> implements Info<T> {
- private T var;
- // 定义泛型构造方法
- public InfoImp(T var) {
- this.setVar(var);
- }
- public void setVar(T var) {
- this.var = var;
- }
- public T getVar() {
- return this.var;
- }
- }
Length Of String: 18
类型擦除
如果在使用泛型时没有指明数据类型,那么就会擦除泛型类型,请看下面的代码:运行结果:
- public class Demo {
- public static void main(String[] args){
- Point p = new Point(); // 类型擦除
- p.setX(10);
- p.setY(20.8);
- int x = (Integer)p.getX(); // 向下转型
- double y = (Double)p.getY();
- System.out.println("This point is:" + x + ", " + y);
- }
- }
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- }
This point is:10, 20.8
因为在使用泛型时没有指明数据类型,为了不出现错误,编译器会将所有数据向上转型为 Object,所以在取出坐标使用时要向下转型,这与本文一开始不使用泛型没什么两样。
限制泛型的可用类型
在上面的代码中,类型参数可以接受任意的数据类型,只要它是被定义过的。但是,很多时候我们只需要一部分数据类型就够了,用户传递其他数据类型可能会引起错误。例如,编写一个泛型函数用于返回不同类型数组(Integer 数组、Double 数组、Character 数组等)中的最大值:上面的代码会报错,doubleValue() 是 Number 类的方法,不是所有的类都有该方法,所以我们要限制类型参数 T,让它只能接受 Number 及其子类(Integer、Double、Character 等)。
- public <T> T getMax(T array[]){
- T max = null;
- for(T element : array){
- max = element.doubleValue() > max.doubleValue() ? element : max;
- }
- return max;
- }
通过 extends 关键字可以限制泛型的类型,改进上面的代码:
<T extends Number> 表示 T 只接受 Number 及其子类,传入其他类型的数据会报错。这里的限定使用关键字 extends,后面可以是类也可以是接口。但这里的 extends 已经不是继承的含义了,应该理解为 T 是继承自 Number 类的类型,或者 T 是实现了 XX 接口的类型。
- public <T extends Number> T getMax(T array[]){
- T max = null;
- for(T element : array){
- max = element.doubleValue() > max.doubleValue() ? element : max;
- }
- return max;
- }
类型参数的范围
在泛型中,如果不对类型参数加以限制,它就可以接受任意的数据类型,只要它是被定义过的。但是,很多时候我们只需要一部分数据类型就够了,用户传递其他数据类型可能会引起错误。例如,编写一个泛型函数用于返回不同类型数组(Integer 数组、Double 数组等)中的最大值:上面的代码会报错,doubleValue() 是 Number 类及其子类的方法,不是所有的类都有该方法,所以我们要限制类型参数 T,让它只能接受 Number 及其子类(Integer、Double、Character 等)。
- public <T> T getMax(T array[]){
- T max = null;
- for(T element : array){
- max = element.doubleValue() > max.doubleValue() ? element : max;
- }
- return max;
- }
通过 extends 关键字可以限制泛型的类型的上限,改进上面的代码:
<T extends Number> 表示 T 只接受 Number 及其子类,传入其他类型的数据会报错。这里的限定使用关键字 extends,后面可以是类也可以是接口。如果是类,只能有一个;但是接口可以有多个,并以“&”分隔,例如 <T extends Interface1 & Interface2>。
- public <T extends Number> T getMax(T array[]){
- T max = null;
- for(T element : array){
- max = element.doubleValue() > max.doubleValue() ? element : max;
- }
- return max;
- }
这里的 extends 关键字已不再是继承的含义了,应该理解为 T 是继承自 Number 类的类型,或者 T 是实现了 XX 接口的类型。
通配符(?)
上一节的例子中提到要定义一个泛型类来表示坐标,坐标可以是整数、小数或字符串,请看下面的代码:现在要求在类的外部定义一个 printPoint() 方法用于输出坐标,怎么办呢?
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- }
可以这样来定义方法:
我们知道,如果在使用泛型时没有指名具体的数据类型,就会擦除泛型类型,并向上转型为 Object,这与不使用泛型没什么两样。上面的代码没有指明数据类型,相当于:
- public void printPoint(Point p){
- System.out.println("This point is: " + p.getX() + ", " + p.getY());
- }
为了避免类型擦除,可以使用通配符(?):
- public void printPoint(Point<Object, Object> p){
- System.out.println("This point is: " + p.getX() + ", " + p.getY());
- }
通配符(?)可以表示任意的数据类型。将代码补充完整:
- public void printPoint(Point<?, ?> p){
- System.out.println("This point is: " + p.getX() + ", " + p.getY());
- }
运行结果:
- public class Demo {
- public static void main(String[] args){
- Point<Integer, Integer> p1 = new Point<Integer, Integer>();
- p1.setX(10);
- p1.setY(20);
- printPoint(p1);
- Point<String, String> p2 = new Point<String, String>();
- p2.setX("东京180度");
- p2.setY("北纬210度");
- printPoint(p2);
- }
- public static void printPoint(Point<?, ?> p){ // 使用通配符
- System.out.println("This point is: " + p.getX() + ", " + p.getY());
- }
- }
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- }
This point is: 10, 20
This point is: 东京180度, 北纬210度
但是,数字坐标与字符串坐标又有区别:数字可以表示x轴或y轴的坐标,字符串可以表示地球经纬度。现在又要求定义两个方法分别处理不同的坐标,一个方法只能接受数字类型的坐标,另一个方法只能接受字符串类型的坐标,怎么办呢?
这个问题的关键是要限制类型参数的范围,请先看下面的代码:
运行结果:
- public class Demo {
- public static void main(String[] args){
- Point<Integer, Integer> p1 = new Point<Integer, Integer>();
- p1.setX(10);
- p1.setY(20);
- printNumPoint(p1);
- Point<String, String> p2 = new Point<String, String>();
- p2.setX("东京180度");
- p2.setY("北纬210度");
- printStrPoint(p2);
- }
- // 借助通配符限制泛型的范围
- public static void printNumPoint(Point<? extends Number, ? extends Number> p){
- System.out.println("x: " + p.getX() + ", y: " + p.getY());
- }
- public static void printStrPoint(Point<? extends String, ? extends String> p){
- System.out.println("GPS: " + p.getX() + "," + p.getY());
- }
- }
- class Point<T1, T2>{
- T1 x;
- T2 y;
- public T1 getX() {
- return x;
- }
- public void setX(T1 x) {
- this.x = x;
- }
- public T2 getY() {
- return y;
- }
- public void setY(T2 y) {
- this.y = y;
- }
- }
x: 10, y: 20
GPS: 东京180度,北纬210度
? extends Number 表示泛型的类型参数只能是 Number 及其子类,? extends String 也一样,这与定义泛型类或泛型方法时限制类型参数的范围类似。
不过,使用通配符(?)不但可以限制类型的上限,还可以限制下限。限制下限使用 super 关键字,例如 <? super Number> 表示只能接受 Number 及其父类。
2.4- Java不支持通用的Throwable
我们不能创建一个通用类,它是Throwable的子类,因为Java不支持创建这样的类。 编译器的错误信息:- The generic class MyException<E> may not subclass java.lang.Throwable
Java不允许创建一个通用的Throwable类,因为它不会带来任何好处。其原因是这个信息仅用于程序员代码控制编译器。在Java运行时,通用信息不存在,错误<Account>或错误的对象 <User>是错误的对象类型。
} catch( Mistake<Account> ea) {
// If exceptions Mistake occurs, this block will be executed
...
} catch( Mistake<User> eu) {
// This block is never executed
...
}
4- 通用对象初始化
有时候,要初始化一个通用对象:// Generic Object Initialization如果想初始化通用对象,需要传递 Class<T>对象到Java,这有助于Java使用Java反射在运行时创建的通用对象。
T t = new T(); // Error
- Bar.class
package com.yiibai.tutorial.generics.o;
import java.util.Date;
public class Bar {
// Class này phải có cấu tử mặc định
public Bar() {
}
public void currentDate() {
System.out.println("Now is: " + new Date());
}
}
- MyGeneric.java
package com.yiibai.tutorial.generics.o;
public class MyGeneric<T> {
private T tobject;
public MyGeneric(Class<T> tclass)
throws InstantiationException, IllegalAccessException {
this.tobject = (T) tclass.newInstance();
}
public T getTObject() {
return this.tobject;
}
}
- MyGenericDemo.java
package com.yiibai.tutorial.generics.o;
public class MyGenericDemo {
public static void main(String[] args) throws Exception {
MyGeneric<Bar> mg = new MyGeneric<Bar>(Bar.class);
Bar bar = mg.getTObject();
bar.currentDate();
}
}
6.2- 通配符参数化类型不能使用泛型方法
- ValidWildcard1.java
package com.yiibai.tutorial.generics.w;
import java.util.ArrayList;
public class ValidWildcard1 {
public static void main(String[] args) {
// ArrayList<E>
// A list containing the elements of type String.
ArrayList<String> listString
= new ArrayList<String>();
// Using generic method: add(E)
// Add not null element to list
listString.add("Tom");
listString.add("Jerry");
// Add null element to list
listString.add(null);
}
}
- InvalidWildcard1.java
package com.yiibai.tutorial.generics.w;import java.util.ArrayList;public class InvalidWildcard1 { public static void main(String[] args) { // ArrayList<E> // A list containing the elements of type String. ArrayList<String> listString = new ArrayList<String>(); // A wildcard parameterized type ArrayList<? extends Object> listWildcard = listString; // Using generic method: add(E) // A wildcard parameterized object can not be used // generic method with generic parameter not null. listWildcard.add("Tom"); // Error! listWildcard.add("Jerry"); // Error! // But can use generic methods // with null parameter. listWildcard.add(null); }}6.3- 通配符不能加入new操作符
通配符参数化类型不会出现在新的表达具体类型。它只是通过Java泛型已使用的任何特定方案有效实施的规则。// 通配符不能参加new运算符 List<? extends Object> list= new ArrayList<? extends Object>();