1、数据爬取说明
1.1 爬取目的
一个朋友在学习自考,作业是爬取数据进行数据分析,正好最近我在学习python,所以他委托我帮他完成这一工作
1.2使用模块
requests进行网络请求、bs4进行数据解析、xlwt进行excel表格存储
2、网页结构分析
2.1 首页分析,获取数据
网页链接:http://sh.lianjia.com/ershoufang/pudongxinqu 红色文字对应的是区名
# 指定爬虫所需的上海各个区域名称
citys = ['pudongxinqu','minhang','baoshan','xuhui','putuo','yangpu','changning','songjiang',
'jiading','huangpu','jinan','zhabei','hongkou','qingpu','fengxian','jinshan','chongming','shanghaizhoubian']
def getHtml(city):
url = 'http://sh.lianjia.com/ershoufang/%s/' % city
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
request = requests.get(url=url,headers=headers)
# 获取源码内容比request.text好,对编码方式优化好
respons = request.content
# 使用bs4模块,对响应的链接源代码进行html解析,后面是python内嵌的解释器,也可以安装使用lxml解析器
soup = BeautifulSoup(respons,'html.parser')
# 获取类名为c-pagination的div标签,是一个列表
page = soup.select('div .c-pagination')[0]
# 如果标签a标签数大于1,说明多页,取出最后的一个页码,也就是总页数
if len(page.select('a')) > 1:
alist = int(page.select('a')[-2].text)
else:#否则直接取出总页数
alist = int(page.select('span')[0].text)
saveData(city,url,alist+1)
2.2 获取每个区的总页数
2.3 选中一页查看页面链接规律
具体链接地址:http://sh.lianjia.com/ershoufang/pudongxinqu/d2
请求页面具体数据,数据结构
3.总代码
我用的是python2.7进行爬取的,不确定在python3之后的运行有没有问题,建议python2版本进行尝试
#_*_coding:utf-8_*_
# 导入开发模块
import requests
# 用于解析html数据的框架
from bs4 import BeautifulSoup
# 用于操作excel的框架
import xlwt
# 创建一个工作
book = xlwt.Workbook()
# 向表格中增加一个sheet表,sheet1为表格名称 允许单元格覆盖
sheet = book.add_sheet('sheet1', cell_overwrite_ok=True)
# 指定爬虫所需的上海各个区域名称
citys = ['pudongxinqu','minhang','baoshan','xuhui','putuo','yangpu','changning','songjiang',
'jiading','huangpu','jinan','zhabei','hongkou','qingpu','fengxian','jinshan','chongming','shanghaizhoubian']
def getHtml(city):
url = 'http://sh.lianjia.com/ershoufang/%s/' % city
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
request = requests.get(url=url,headers=headers)
# 获取源码内容比request.text好,对编码方式优化好
respons = request.content
# 使用bs4模块,对响应的链接源代码进行html解析,后面是python内嵌的解释器,也可以安装使用lxml解析器
soup = BeautifulSoup(respons,'html.parser')
# 获取类名为c-pagination的div标签,是一个列表
page = soup.select('div .c-pagination')[0]
# 如果标签a标签数大于1,说明多页,取出最后的一个页码,也就是总页数
if len(page.select('a')) > 1:
alist = int(page.select('a')[-2].text)
else:#否则直接取出总页数
alist = int(page.select('span')[0].text)
# 调用方法解析每页数据
saveData(city,url,alist+1)
# for i in range(1,alist + 1):
# urlStr = '%sd%s' % (url,i)
# 调用方法解析每页数据,并且保存到表格中
def saveData(city,url,page):
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'
}
for i in range(1,page):
html = requests.get(url='%sd%s' % (url,i),headers=headers).content
soup = BeautifulSoup(html,'html.parser')
infos = soup.select('.js_fang_list')[0].select('li')
for info in infos:
# print '*'*50
des = info.find('a',class_="text link-hover-green js_triggerGray js_fanglist_title").text
dd = info.find('div',class_='info-table')
nameInfo = dd.find('a',class_='laisuzhou')
name = nameInfo.text # 每套二手房的小区名称
fangL = dd.find('span').contents[-1].strip().split('|')
room_type = fangL[0].strip() # 每套二手房的户型
size = fangL[1].strip() # 每套二手房的面积
if len(fangL[2].split('/')) == 2:
region = fangL[2].split('/')[0].strip() # 每套二手房所属的区域
loucheng = fangL[2].split('/')[1].strip() # 每套二手房所在的楼层
else:
region = '' # 每套二手房所属的区域
loucheng = fangL[2].strip() # 每套二手房所在的楼层
if len(fangL) != 4:
chaoxiang = '*'
else:
chaoxiang = fangL[3].strip() # 每套二手房的朝向
timeStr = info.find('span',class_='info-col row2-text').contents[-1].strip().lstrip('|')
builtdate = timeStr # 每套二手房的建筑时间
# 每套二手房的总价
price = info.find('span',class_='total-price strong-num').text.strip()+u'万'
# 每套二手房的平方米售价
jun = info.find('span',class_='info-col price-item minor').text
price_union = jun.strip()
# 一定要声明使用全局的row变量,否则会报错,说定义前使用了该变量
global row
# 把数据写入表中,row:行数 第二个参数:第几列 第三个参数:写入的内容
sheet.write(row,0,des)
sheet.write(row,1,name)
sheet.write(row,2,room_type)
sheet.write(row,3,size)
sheet.write(row,4,region)
sheet.write(row,5,loucheng)
sheet.write(row,6,chaoxiang)
sheet.write(row,7,price)
sheet.write(row,8,price_union)
sheet.write(row,9,builtdate)
# 每次写完一行,把行索引进行加一
row += 1
# with open('%s.csv' % city,'ab') as fd:
# allStr = ','.join([name,room_type,size,region,loucheng,chaoxiang,price,price_union,builtdate])+'\n'
# fd.write(allStr.encode('utf-8'))
# 判断当前运行的脚本是否是该脚本,如果是则执行
# 如果有文件xxx继承该文件或导入该文件,那么运行xxx脚本的时候,这段代码将不会执行
if __name__ == '__main__':
# getHtml('jinshan')
row=0
for i in citys:
getHtml(i)
# 最后执行完了保存表格,参数为要保存的路径和文件名,如果不写路径则默然当前路径
book.save('lianjia-shanghai.xls')
4.说明
由于作者不善于写博客,写的有点乱,望大家谅解,读者有什么不懂的可以留言问我,也可以像我提出意见和建议,在以后的博客写作中更加注意,谢谢你们的谅解,愿和大家共同学习