一、Python标准模块——concurrent.futures
官方文档:https://docs.python.org/dev/library/concurrent.futures.html
二、介绍
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor:进程池,提供异步调用
Both implement the same interface, which is defined by the abstract Executor class.
三、基本方法
submit(fn, *args, **kwargs)
:异步提交任务
map(func, *iterables, timeout=None, chunksize=1)
:取代for循环submit的操作
shutdown(wait=True)
:相当于进程池的pool.close()+pool.join()
操作
- wait=True,等待池内所有任务执行完毕回收完资源后才继续
- wait=False,立即返回,并不会等待池内的任务执行完毕
- 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
- submit和map必须在shutdown之前
result(timeout=None)
:取得结果
add_done_callback(fn)
:回调函数
done()
:判断某一个线程是否完成
cancle()
:取消某个任务
四、ProcessPoolExecutor
#介绍
The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.
class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised.
#用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import os,time,random
def task(n):
print('%s is runing' %os.getpid())
time.sleep(random.randint(1,3))
return n**2
if __name__ == '__main__':
executor=ProcessPoolExecutor(max_workers=3)
futures=[]
for i in range(11):
future=executor.submit(task,i)
futures.append(future)
executor.shutdown(True)
print('+++>')
for future in futures:
print(future.result())
五、ThreadPoolExecutor
#介绍
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.
Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.
New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging.
#用法
与ProcessPoolExecutor相同
六、map的用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import os,time,random
def task(n):
print('%s is runing' %os.getpid())
time.sleep(random.randint(1,3))
return n**2
if __name__ == '__main__':
executor=ThreadPoolExecutor(max_workers=3)
# for i in range(11):
# future=executor.submit(task,i)
executor.map(task,range(1,12)) #map取代了for+submit
七、回调函数
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os
def get_page(url):
print('<进程%s> get %s' %(os.getpid(),url))
respone=requests.get(url)
if respone.status_code == 200:
return {'url':url,'text':respone.text}
def parse_page(res):
res=res.result()
print('<进程%s> parse %s' %(os.getpid(),res['url']))
parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
with open('db.txt','a') as f:
f.write(parse_res)
if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.python.org',
'https://www.openstack.org',
'https://help.github.com/',
'http://www.sina.com.cn/'
]
# p=Pool(3)
# for url in urls:
# p.apply_async(get_page,args=(url,),callback=pasrse_page)
# p.close()
# p.join()
p=ProcessPoolExecutor(3)
for url in urls:
p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果
Python程序中的线程操作-concurrent模块的更多相关文章
-
30、Python程序中的线程操作(oncurrent模块)
进程是cpu资源分配的最小单元,一个进程中可以有多个线程. 线程是cpu计算的最小单元. 对于Python来说他的进程和线程和其他语言有差异,是有GIL锁. GIL锁 GIL锁保证一个进程中同一时刻只 ...
-
Python程序中的线程操作(线程池)-concurrent模块
目录 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecut ...
-
Python程序中的线程操作-创建多线程
目录 一.python线程模块的选择 二.threading模块 三.通过threading.Thread类创建线程 3.1 创建线程的方式一 3.2 创建线程的方式二 四.多线程与多进程 4.1 p ...
-
Python程序中的线程操作-锁
目录 一.同步锁 1.1 多个线程抢占资源的情况 1.1.1 对公共数据的操作 1.2 同步锁的引用 1.3 互斥锁与join的区别 二.死锁与递归锁 2.1 死锁 2.2 递归锁RLock 三.典型 ...
-
Python程序中的线程操作-守护线程
目录 一.守护线程 1.1 详细解释 1.2 守护线程例1 1.3 守护线程例2 一.守护线程 无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁.需要强调的是:运行完毕并非终止运行. ...
-
Python程序中的线程操作-线程队列
目录 一.线程队列 二.先进先出 三.后进先出 四.存储数据时可设置优先级的队列 4.1 优先级队列 4.2 更多方法说明 一.线程队列 queue队列:使用import queue,用法与进程Que ...
-
在Python程序中的进程操作,multiprocess.Process模块
在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...
-
python 全栈开发,Day38(在python程序中的进程操作,multiprocess.Process模块)
昨日内容回顾 操作系统纸带打孔计算机批处理 —— 磁带 联机 脱机多道操作系统 —— 极大的提高了CPU的利用率 在计算机中 可以有超过一个进程 进程遇到IO的时候 切换给另外的进程使用CPU 数据隔 ...
-
Python程序中的进程操作--—--开启多进程
Python程序中的进程操作-----开启多进程 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创 ...
随机推荐
-
设计模式之六大原则——迪米特法则(LoD,LKP)
转载于:http://www.cnblogs.com/muzongyan/archive/2010/08/05/1793000.html 定义: 迪米特法则(Law of Demeter,LoD)也 ...
-
HTML5课程大纲/学习路线
HTML5课程大纲/学习路线 这是什么? 这个一个HTML技术路线的课程大纲/学习大纲. 你能用它做什么? 如果你是找工作的人, 利用本大纲, 你可以学习HTML5语言, 做一个HTML前端工程师, ...
-
cppunit学习笔记
下载cppunit 链接:http://www.cnblogs.com/duxiuxing/p/4303809.html cppunit官方文档浅析 链接:http://www.cnblogs.com ...
-
MVC加载view的方式
主要有 Html.ActionLink Html.RenderPartial Html.RenderAction Html.Partial Ajax.ActionLink load 浏览器对象模型 ( ...
-
基于visual Studio2013解决C语言竞赛题之0610冒泡排序函数
题目
-
Python面向对象编程(四)
1.多态 多态的概念虽然现在才说,但是我们一直在用.多态就是多种形态的意思,动物都猫,狗,猪等等,这些都是动物的多种形态. 反映在Python中,多态就意味着就算不知道变量所引用的对象类型是什么,也能 ...
-
grpc的服务注册与发现及负载
参考文章: (1)https://segmentfault.com/a/1190000008672912 (2)https://grpc.io/docs/ (3)https://github.com/ ...
-
Python3输入输出
Python两种输出值的方式: 表达式语句和 print() 函数. 第三种方式是使用文件对象的 write() 方法,标准输出文件可以用 sys.stdout 引用. 如果你希望输出的形式更加多样, ...
-
[重要] Django 多条件多表查询实例问题
当时想做一个多条件查询,但是对于要查询的信息,是分布在不同的表里,这就涉及到了多表查询问题. DjangoBook里提到了一些查询的方式,但是不够全面,就去百度搜了下. 当去网上百度搜多表查询,或多条 ...
-
SaltStack入门篇(一)之SaltStack部署
一.SaltStack概述 Salt,,一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, ...