一 同步锁
注意:
1线程抢的是GIL锁,GIL锁就是执行权限,拿到权限后才能拿到互斥锁Lock,但是如果发现Lock没有被释放而阻塞,则立即交出拿到的执行权。
2join是等待所有,即整体串行,而锁是锁住共享数据部分,即部分串行,而要想保证数据安全就必须让并发变成串行,join和互斥锁都可以实现,但互斥锁的部分串行效率要高一些。
3GIL与Lock
GIL是保护解释器级别的锁,而Lock是保护用户开发应用程序数据的锁。
from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release()
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join() print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全
4GLL与Lock锁的综合分析(重点)
分析:
1.100个线程去抢GIL锁,即抢执行权限
2. 肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3. 极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,*交出执行权限,即释放GIL
4.直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import os,time
def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join() stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
''' #不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
from threading import current_thread,Thread,Lock
import os,time
def task():
#未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
#加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release() if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
''' #有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
#没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
#start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
#单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
from threading import current_thread,Thread,Lock
import os,time
def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''
互斥锁与join的区别(重点!!!)
二 死锁现象及递归锁
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。
解决死锁的方法是递归锁
mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
三 信号量Semaphore
同进程的一样
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5)
from threading import Thread,Semaphore
import threading
import time
# def func():
# if sm.acquire():
# print (threading.currentThread().getName() + ' get semaphore')
# time.sleep(2)
# sm.release()
def func():
sm.acquire()
print('%s get sm' %threading.current_thread().getName())
time.sleep(3)
sm.release()
if __name__ == '__main__':
sm=Semaphore(5)
for i in range(23):
t=Thread(target=func)
t.start()
与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
四 Event
十一 Event
同进程的一样,线程的一个关键特性是每个线程都是独立运行且状态不可预测。
event.isSet():返回event的状态值; event.wait():如果 event.isSet()==False将阻塞线程; event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度; event.clear():恢复event的状态值为False。
例如,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作
from threading import Thread,Event
import threading
import time,random
def conn_mysql():
count=1
while not event.is_set():
if count > 3:
raise TimeoutError('链接超时')
print('<%s>第%s次尝试链接' % da(threading.current_thread().getName(), count))
event.wait(0.5)
count+=1
print('<%s>链接成功' %threading.current_thread().getName()) def check_mysql():
print('\033[45m[%s]正在检查mysql\033[0m' % threading.current_thread().getName())
time.sleep(random.randint(2,4))
event.set()
if __name__ == '__main__':
event=Event()
conn1=Thread(target=conn_mysql)
conn2=Thread(target=conn_mysql)
check=Thread(target=check_mysql) conn1.start()
conn2.start()
check.start()
五 条件Condtion
线程等待,只有满足某条件时,才释放n个线程
import threading def run(n):
con.acquire()
con.wait()
print("run the thread: %s" %n)
con.release() if __name__ == '__main__': con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start() while True:
inp = input('>>>')
if inp == 'q':
break
con.acquire()
con.notify(int(inp))
con.release()
def condition_func():
ret = False
inp = input('>>>')
if inp == '1':
ret = True
return ret
def run(n):
con.acquire()
con.wait_for(condition_func)
print("run the thread: %s" %n)
con.release()
if __name__ == '__main__':
con = threading.Condition()
for i in range(10):
t = threading.Thread(target=run, args=(i,))
t.start()
六 定时器
定时器,指定n秒后执行某操作
from threading import Timer def hello():
print("hello, world") t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed
七 线程queue
queue队列 :使用import queue,用法与进程Queue一样,队列在线程编程中尤其有用,因为必须在多个线程之间安全地交换信息。class queue.
Queue
(maxsize=0) #先进先出
import queue q=queue.Queue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''
class queue.
LifoQueue
(maxsize=0) #last in fisrt out
import queue q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''
class queue.
PriorityQueue
(maxsize=0) #存储数据时可设置优先级的队列
import queue q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''
八 python的标准模块--concurrent.futures:https://docs.python.org/dev/library/concurrent.futures.html