hdoj2604 Queuing(矩阵快速幂)

时间:2024-04-24 10:34:25

此题如果直接利用递推关系,处理不好会超内存的。

首先找出递推关系式,先给出递推关系式:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 );可以先尝试推导一下,推不出来再看下面的解释。

PS.以前做过一个类似的递推关系的题。

考虑当L=n时的情况,有两种情况:

①.如果最后一个字符为m :此时,只要前面长度为n-1的串符合要求,则当前长度为n的串必然符合要求。

②.如果最后一个字符为f:此时,无法确定,因为可能存在不符合要求的串,继续分情况讨论

(1).最后倒数二个字符为f,仍然可能存在不符合要求的串,继续分情况讨论

1.倒数第三个字符为f,因为存在fff,所以该种情况必然不符合要求,舍去

2.倒数第三个字符为m,仍然有可能不符合要求,再分

a.最后第四个字符为f,存在fmf,所以该种情况必然不符合要求,舍去

b.最后第四个字符为m,只要前面长度为n-4的串符合要求,则当前长度为n的串必然也符合要求

(2).最后第二个字符为m,存在可能不符合要求的情况,分

1.最后第三个字符为f,存在fmf,此时必然不符合要求舍去

2.最后第三个字符为m,只要前面长度为n-3的串的情况符合要求,则当前长度为n的串必然符合要求。

所以讲符合要求的情况相加就得到:( L )=( L - 1 ) + ( L - 3 ) + ( L - 4 );

前面已经讲过如果只是用普通递归方法会超内存,所以这里要考虑优化。

怎么优化?先看下面的矩阵相乘的结果:

hdoj2604  Queuing(矩阵快速幂)

x矩阵是多少会得到后面的矩阵?我们只需考虑后面矩阵的第一行,因为其他元素为0.

第1行第1列的元素我们需要得到f ( n ),因为f(n)=f(n-1)+f(n-3)+f(n-4); 所以我们必须保留f(n-1),f(n-3),f(n-4) 所以与之相乘的数必须为1.

所以第1列元素可以确定,为1 0 1 1,注意,是第一列而不是第一行。

根据第一行第二列元素,我们可以确定x矩阵第二列元素:1 0 0 0.

根据第一行第三列元素,我们可以确定x矩阵第三列元素:0 1 0 0.

根据第一行第四列元素,我们可以确定x矩阵第四列元素:0 0 1 0.

所以x矩阵已经确定,所以我们可以得到下面的矩阵乘式:

hdoj2604  Queuing(矩阵快速幂)

所以,反复乘以x矩阵就可以得到想要的f(n);

所以可以先求出x矩阵的L-4(不是L)次方,到这就转化为了矩阵快速幂问题。然后在用  f(4)   f(3)  f(2)   f(1)   乘以求次方后的矩阵的第一列元素  ,相加就得到f(n)=res[0][0]*f[4]+res[1][0]*f[3]+res[2][0]*f[2]+res[3[0]*f[1]。


#include<iostream>
#include<cstring>
#include<string>
#define maxn 5
using namespace std;
struct mat{
int a[maxn][maxn];
};
mat mat_mul(mat x,mat y,int Mod){
mat ans;
memset(ans.a,,sizeof(ans.a));
for (int i=;i<;i++)
for (int j=;j<;j++)
for (int k=;k<;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j];
ans.a[i][j]%=Mod;
}
return ans;
}
void mat_pow(mat &res,int k,int Mod){ //res的k次方
mat c=res;
k--;
while (k){
if (k&) res=mat_mul(res,c,Mod);
k>>=;
c=mat_mul(c,c,Mod);
}
}
int main(){
int l,m;
while (cin >> l >> m){
int f[]={};
f[]=;f[]=;f[]=;f[]=;
mat res;
memset(res.a,,sizeof(res.a));
res.a[][]=res.a[][]=res.a[][]=res.a[][]=res.a[][]=res.a[][]=;
if (l<=){
cout << f[l]%m << endl;
continue;
}
else mat_pow(res,l-,m);
int ans=;
for (int i=;i<;i++){
ans+=res.a[i][]*f[-i]%m;
}
cout << ans%m << endl;
}
}