Hadoop YARN同时支持内存和CPU两种资源的调度,本文介绍如何配置YARN对内存和CPU的使用。
YARN作为一个资源调度器,应该考虑到集群里面每一台机子的计算资源,然后根据application申请的资源进行分配Container。Container是YARN里面资源分配的基本单位,具有一定的内存以及CPU资源。
在YARN集群中,平衡内存、CPU、磁盘的资源的很重要的,根据经验,每两个container使用一块磁盘以及一个CPU核的时候可以使集群的资源得到一个比较好的利用。
内存配置
关于内存相关的配置可以参考hortonwork公司的文档Determine HDP Memory Configuration Settings来配置你的集群。
YARN以及MAPREDUCE所有可用的内存资源应该要除去系统运行需要的以及其他的hadoop的一些程序,总共保留的内存=系统内存+HBASE内存。
可以参考下面的表格确定应该保留的内存:
每台机子内存 | 系统需要的内存 | HBase需要的内存 |
---|---|---|
4GB | 1GB | 1GB |
8GB | 2GB | 1GB |
16GB | 2GB | 2GB |
24GB | 4GB | 4GB |
48GB | 6GB | 8GB |
64GB | 8GB | 8GB |
72GB | 8GB | 8GB |
96GB | 12GB | 16GB |
128GB | 24GB | 24GB |
255GB | 32GB | 32GB |
512GB | 64GB | 64GB |
计算每台机子最多可以拥有多少个container,可以使用下面的公式:
containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)
说明:
-
CORES
为机器CPU核数 -
DISKS
为机器上挂载的磁盘个数 -
Total available RAM
为机器总内存 -
MIN_CONTAINER_SIZE
是指container最小的容量大小,这需要根据具体情况去设置,可以参考下面的表格:
每台机子可用的RAM | container最小值 |
---|---|
小于4GB | 256MB |
4GB到8GB之间 | 512MB |
8GB到24GB之间 | 1024MB |
大于24GB | 2048MB |
每个container的平均使用内存大小计算方式为:
RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
通过上面的计算,YARN以及MAPREDUCE可以这样配置:
配置文件 | 配置设置 | 默认值 | 计算值 |
---|---|---|---|
yarn-site.xml | yarn.nodemanager.resource.memory-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | 1024MB | = RAM-per-container |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | 8192 MB | = containers * RAM-per-container |
yarn-site.xml (check) | yarn.app.mapreduce.am.resource.mb | 1536 MB | = 2 * RAM-per-container |
yarn-site.xml (check) | yarn.app.mapreduce.am.command-opts | -Xmx1024m | = 0.8 * 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.memory.mb | 1024 MB | = RAM-per-container |
mapred-site.xml | mapreduce.reduce.memory.mb | 1024 MB | = 2 * RAM-per-container |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * RAM-per-container | |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * RAM-per-container |
举个例子:对于128G内存、32核CPU的机器,挂载了7个磁盘,根据上面的说明,系统保留内存为24G,不适应HBase情况下,系统剩余可用内存为104G,计算containers值如下:
containers = min (2*32, 1.8* 7 , (128-24)/2) = min (64, 12.6 , 51) = 13
计算RAM-per-container值如下:
RAM-per-container = max (2, (124-24)/13) = max (2, 8) = 8
你也可以使用脚本yarn-utils.py来计算上面的值:
#!/usr/bin/env python
import optparse
from pprint import pprint
import logging
import sys
import math
import ast
''' Reserved for OS + DN + NM, Map: Memory => Reservation '''
reservedStack = { 4:1, 8:2, 16:2, 24:4, 48:6, 64:8, 72:8, 96:12,
128:24, 256:32, 512:64}
''' Reserved for HBase. Map: Memory => Reservation '''
reservedHBase = {4:1, 8:1, 16:2, 24:4, 48:8, 64:8, 72:8, 96:16,
128:24, 256:32, 512:64}
GB = 1024
def getMinContainerSize(memory):
if (memory <= 4):
return 256
elif (memory <= 8):
return 512
elif (memory <= 24):
return 1024
else:
return 2048
pass
def getReservedStackMemory(memory):
if (reservedStack.has_key(memory)):
return reservedStack[memory]
if (memory <= 4):
ret = 1
elif (memory >= 512):
ret = 64
else:
ret = 1
return ret
def getReservedHBaseMem(memory):
if (reservedHBase.has_key(memory)):
return reservedHBase[memory]
if (memory <= 4):
ret = 1
elif (memory >= 512):
ret = 64
else:
ret = 2
return ret
def main():
log = logging.getLogger(__name__)
out_hdlr = logging.StreamHandler(sys.stdout)
out_hdlr.setFormatter(logging.Formatter(' %(message)s'))
out_hdlr.setLevel(logging.INFO)
log.addHandler(out_hdlr)
log.setLevel(logging.INFO)
parser = optparse.OptionParser()
memory = 0
cores = 0
disks = 0
hbaseEnabled = True
parser.add_option('-c', '--cores', default = 16,
help = 'Number of cores on each host')
parser.add_option('-m', '--memory', default = 64,
help = 'Amount of Memory on each host in GB')
parser.add_option('-d', '--disks', default = 4,
help = 'Number of disks on each host')
parser.add_option('-k', '--hbase', default = "True",
help = 'True if HBase is installed, False is not')
(options, args) = parser.parse_args()
cores = int (options.cores)
memory = int (options.memory)
disks = int (options.disks)
hbaseEnabled = ast.literal_eval(options.hbase)
log.info("Using cores=" + str(cores) + " memory=" + str(memory) + "GB" +
" disks=" + str(disks) + " hbase=" + str(hbaseEnabled))
minContainerSize = getMinContainerSize(memory)
reservedStackMemory = getReservedStackMemory(memory)
reservedHBaseMemory = 0
if (hbaseEnabled):
reservedHBaseMemory = getReservedHBaseMem(memory)
reservedMem = reservedStackMemory + reservedHBaseMemory
usableMem = memory - reservedMem
memory -= (reservedMem)
if (memory < 2):
memory = 2
reservedMem = max(0, memory - reservedMem)
memory *= GB
containers = int (min(2 * cores,
min(math.ceil(1.8 * float(disks)),
memory/minContainerSize)))
if (containers <= 2):
containers = 3
log.info("Profile: cores=" + str(cores) + " memory=" + str(memory) + "MB"
+ " reserved=" + str(reservedMem) + "GB" + " usableMem="
+ str(usableMem) + "GB" + " disks=" + str(disks))
container_ram = abs(memory/containers)
if (container_ram > GB):
container_ram = int(math.floor(container_ram / 512)) * 512
log.info("Num Container=" + str(containers))
log.info("Container Ram=" + str(container_ram) + "MB")
log.info("Used Ram=" + str(int (containers*container_ram/float(GB))) + "GB")
log.info("Unused Ram=" + str(reservedMem) + "GB")
log.info("yarn.scheduler.minimum-allocation-mb=" + str(container_ram))
log.info("yarn.scheduler.maximum-allocation-mb=" + str(containers*container_ram))
log.info("yarn.nodemanager.resource.memory-mb=" + str(containers*container_ram))
map_memory = container_ram
reduce_memory = 2*container_ram if (container_ram <= 2048) else container_ram
am_memory = max(map_memory, reduce_memory)
log.info("mapreduce.map.memory.mb=" + str(map_memory))
log.info("mapreduce.map.java.opts=-Xmx" + str(int(0.8 * map_memory)) +"m")
log.info("mapreduce.reduce.memory.mb=" + str(reduce_memory))
log.info("mapreduce.reduce.java.opts=-Xmx" + str(int(0.8 * reduce_memory)) + "m")
log.info("yarn.app.mapreduce.am.resource.mb=" + str(am_memory))
log.info("yarn.app.mapreduce.am.command-opts=-Xmx" + str(int(0.8*am_memory)) + "m")
log.info("mapreduce.task.io.sort.mb=" + str(int(0.4 * map_memory)))
pass
if __name__ == '__main__':
try:
main()
except(KeyboardInterrupt, EOFError):
print("\nAborting ... Keyboard Interrupt.")
sys.exit(1)
执行下面命令:
python yarn-utils.py -c 32 -m 128 -d 7 -k False
返回结果如下:
Using cores=32 memory=128GB disks=7 hbase=False
Profile: cores=32 memory=106496MB reserved=24GB usableMem=104GB disks=7
Num Container=13
Container Ram=8192MB
Used Ram=104GB
Unused Ram=24GB
yarn.scheduler.minimum-allocation-mb=8192
yarn.scheduler.maximum-allocation-mb=106496
yarn.nodemanager.resource.memory-mb=106496
mapreduce.map.memory.mb=8192
mapreduce.map.java.opts=-Xmx6553m
mapreduce.reduce.memory.mb=8192
mapreduce.reduce.java.opts=-Xmx6553m
yarn.app.mapreduce.am.resource.mb=8192
yarn.app.mapreduce.am.command-opts=-Xmx6553m
mapreduce.task.io.sort.mb=3276
这样的话,每个container内存为8G,似乎有点多,我更愿意根据集群使用情况任务将其调整为2G内存,则集群中下面的参数配置值如下:
配置文件 | 配置设置 | 计算值 |
---|---|---|
yarn-site.xml | yarn.nodemanager.resource.memory-mb | = 52 * 2 =104 G |
yarn-site.xml | yarn.scheduler.minimum-allocation-mb | = 2G |
yarn-site.xml | yarn.scheduler.maximum-allocation-mb | = 52 * 2 = 104G |
yarn-site.xml (check) | yarn.app.mapreduce.am.resource.mb | = 2 * 2=4G |
yarn-site.xml (check) | yarn.app.mapreduce.am.command-opts | = 0.8 * 2 * 2=3.2G |
mapred-site.xml | mapreduce.map.memory.mb | = 2G |
mapred-site.xml | mapreduce.reduce.memory.mb | = 2 * 2=4G |
mapred-site.xml | mapreduce.map.java.opts | = 0.8 * 2=1.6G |
mapred-site.xml | mapreduce.reduce.java.opts | = 0.8 * 2 * 2=3.2G |
对应的xml配置为:
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx3276m</value>
</property>
另外,还有一下几个参数:
-
yarn.nodemanager.vmem-pmem-ratio
:任务每使用1MB物理内存,最多可使用虚拟内存量,默认是2.1。 -
yarn.nodemanager.pmem-check-enabled
:是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。 -
yarn.nodemanager.vmem-pmem-ratio
:是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
第一个参数的意思是当一个map任务总共分配的物理内存为2G的时候,该任务的container最多内分配的堆内存为1.6G,可以分配的虚拟内存上限为2*2.1=4.2G。另外,照这样算下去,每个节点上YARN可以启动的Map数为104/2=52个。
CPU配置
YARN中目前的CPU被划分成虚拟CPU(CPU virtual Core),这里的虚拟CPU是YARN自己引入的概念,初衷是,考虑到不同节点的CPU性能可能不同,每个CPU具有的计算能力也是不一样的,比如某个物理CPU的计算能力可能是另外一个物理CPU的2倍,这时候,你可以通过为第一个物理CPU多配置几个虚拟CPU弥补这种差异。用户提交作业时,可以指定每个任务需要的虚拟CPU个数。
在YARN中,CPU相关配置参数如下:
-
yarn.nodemanager.resource.cpu-vcores
:表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设值为与物理CPU核数数目相同。如果你的节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。 -
yarn.scheduler.minimum-allocation-vcores
:单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。 -
yarn.scheduler.maximum-allocation-vcores
:单个任务可申请的最多虚拟CPU个数,默认是32。
对于一个CPU核数较多的集群来说,上面的默认配置显然是不合适的,在我的测试集群中,4个节点每个机器CPU核数为31,留一个给操作系统,可以配置为:
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>31</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>124</value>
</property>
参考文章
转载自http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu-configuration.html?utm_source=tuicool&utm_medium=referral
转载-YARN的内存和CPU配置的更多相关文章
-
YARN的内存和CPU配置
时间 2015-06-05 00:00:00 JavaChen's Blog 原文 http://blog.javachen.com/2015/06/05/yarn-memory-and-cpu- ...
-
aix 查看内存,CPU 配置信息
内存lsattr -El mem0cpu lsdev -C |grep procCPU的信息lsattr -El proc0 #bootinfo -r查看物理内存 使用命令# lsdev ...
-
【原创】大叔经验分享(21)yarn中查看每个应用实时占用的内存和cpu资源
在yarn中的application详情页面 http://resourcemanager/cluster/app/$applicationId 或者通过application命令 yarn appl ...
-
网络互联技术(2)——前篇—【转载】电脑结构和CPU、内存、硬盘三者之间的关系
原文链接:传送门 详细内容: 电脑结构和CPU.内存.硬盘三者之间的关系 前面提到了,电脑之父——冯·诺伊曼提出了计算机的五大部件:输入设备.输出设备.存储器.运算器和控制器. 我们看一下现在我们电脑 ...
-
【转载】Linux下查看CPU、内存占用率
不错的文章(linux系统性能监控--CPU利用率):https://blog.csdn.net/ctthuangcheng/article/details/52795477 在linux的系统维护中 ...
-
Hadoop、Yarn和vcpu资源的配置
转载自:https://www.cnblogs.com/S-tec-songjian/p/5740691.html Hadoop YARN同时支持内存和CPU两种资源的调度(默认只支持内存,如果想进 ...
-
[Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...
-
spark性能调优(四) spark shuffle中JVM内存使用及配置内幕详情
转载:http://www.cnblogs.com/jcchoiling/p/6494652.html 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1. ...
-
Spark Shuffle 中 JVM 内存使用及配置内幕详情
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified M ...
随机推荐
-
用wget下载整个目录
wget -c -r -np -P files www.test.com/dir/src -c 断点续传 -r 递归下载 -np 不下载父附录 -nd 不建立目录,若无此选项,将按照网站目录结构创建目 ...
-
分享一个快速设置背景的js 自动获取背景图的长宽
我来分享一个快速设置背景的js (需要jq支持!) 快速切图铺页面用---就是不需要手动输入背景图的长宽 自动获取背景图的长宽 : <div class="wrap"> ...
-
《Linux内核设计与实现》 Chapter4 读书笔记
<Linux内核设计与实现> Chapter4 读书笔记 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子 ...
-
js cookie操作
//写Cookie function writeCookie(name, value) { var expire = new Date(); expire.setFullYear(expire.get ...
-
文字排版--斜体(font-style)
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
-
Egret 纹理、计时器
1. 九宫切 典型例子就是圆角矩形的拉伸问题. 先去P一张绿色的圆角矩形. private createGameScene():void { var box:egret.Bitmap = new eg ...
-
【Excel】获取网页标题的VBA
在宏录制,完成后可以直接在网格上调用Title(网址).但好些会访问不了,原因不明. Function Title(ByVal url As String) As StringOn Error Res ...
-
SSM-Spring-07:Spring基于注解的di注入
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 注解: 说起注解,哇哦,每个人都或多或少的用到过 像什么@Overried,@Test,@Param等等之前就 ...
-
微信公众平台网页登录授权多次重定向跳转,导致code使用多次问题
背景:微信网站开发 昨天我负责的一个项目忽然出现了一个十分诡异的bug,进行微信授权登录的时候请求code的时候安卓手机会多次重定向调转我的接口接收code的接口(redirect_uri 微信请求调 ...
-
06--STL序列容器(priority_queue)
一:优先队列priority_queue简介 同队列,不支持迭代 (一)和队列相比 同: 优先队列容器与队列一样,只能从队尾插入元素,从队首删除元素. 异: 但是它有一个特性,就是队列中最大的元素总是 ...