牛客网提高组Day1
T1 中位数
这好像是主席树??听说过,不会啊。。。
最后只打了个暴力,可能是n2logn?
只过了前30% qwq
#include<algorithm> #include<cstring> #include<cstdio> using namespace std; const int M = 100005; int n, len; int tmp, ans; int a[M]; struct nond { int id, num; }e[M]; bool cmp1(nond x, nond y) { return x.num < y.num; } bool cmp2(nond x, nond y) { return x.id < y.id; } int main() { scanf("%d%d", &n, &len); for (int i = 1; i <= n; i++) { scanf("%d", &e[i].num); e[i].id = i; } for (int i = 1; i + len - 1 <= n; i++) for (int j = i + len - 1; j <= n; j++) { sort(e + i, e + j + 1, cmp1); if ((j - i + 1) & 1) tmp = e[(j + i) / 2].num; else tmp = e[(j + i - 1) / 2].num; ans = max(ans, tmp); sort(e + i, e + j, cmp2); } printf("%d\n", ans); return 0; }
正解:
二分求最终可能的答案x,把>x的数字记为1,<=x的数字记为-1。检验是否存在和>=0的区间。可以维护前缀和的前缀最小值
复杂度:O(nlogA[i])
#include <bits/stdc++.h> using namespace std; const int maxn = 100005; int a[maxn], n, L; bool test(int z) { static int b[maxn]; for(int i = 1; i <= n; i ++) if (a[i] >= z) b[i] = 1; else b[i] = -1; for(int i = 1, mi = (1 << 30); i <= n; i ++) { if (i >= L) mi = min(mi, b[i - L]); b[i] += b[i - 1]; if (i >= L && b[i] - mi > 0) return 1; } return 0; } int main() { // freopen("median.in","r",stdin); // freopen("median.out","w",stdout); scanf("%d%d", &n, &L); for(int i = 1; i <= n; i ++) scanf("%d", &a[i]); int l = 0, r = int(1e9), tmp; for(int mid; l <= r;) { mid = l + r >> 1; if (test(mid)) tmp = mid, l = mid + 1; else r = mid - 1; } printf("%d\n", tmp); return 0; }
T2 数数字
暴力枚举区间[L, R]中的每一个数,用一个check函数判断每个数的每个位上的数的乘积是否在区间[L1, R1]中,记录答案
本来还想拿L1, R1<=1000的20分来,然后。。。yy了一会,没想出来咋写,so。。只交了40分暴力
#include<algorithm> #include<cstring> #include<cstdio> using namespace std; typedef long long LL; LL l, r, l1, r1; LL ans; LL check2(int x) { LL res = 1; while(x) { int tmp = x % 10; res *= tmp; x /= 10; } if(res >= l1 && res <= r1) return 1; else return 0; } int main() { scanf("%lld%lld%lld%lld", &l, &r, &l1, &r1); for(int i = l; i <= r; i++) if(check2(i)) ans++; printf("%lld\n", ans); return 0; }
正解:
记忆化搜索或数位DP
这几天刚好在做数位DP的题,然而并不会 qwq
DP做法:
由于数位乘积只是由0到9,可以把L1,R1分类讨论,假如区间包含0,则原来的数字分为包含至少一个零,和完全不包含0两类。前一类可以使用简单的数位DP计算。接下来介绍后一类。
由于只包含1到9,所以只用记录乘积的质因数分解中,出现了多少2,3,5,7。题目中的L1,R1不超过10^18,可以计算出2最多为59个,3最多为37, 5最多为26,7最多为21。设F[i][c_2][c_3][c_5][c_7]表示考虑到第i位,乘积状态为c_2,c_3,c_5,c_7的数位DP情况。接着就是经典数位DP做法。空间可能比较紧,需要用滚动数组。
#include <bits/stdc++.h> using namespace std; typedef long long ll; int co[10][10]; ll l, r, l1, r1; ll pw[10][100]; inline int merge(int i, int cr, int b) { return (cr > b ? 2 : (cr == b ? i : 0)); } ll calc_no_zero(ll x) { if (x <= 0) return 0; static ll f[2][3][60][38][27][22]; memset(f,0,sizeof f); int cr = 0; f[0][1][0][0][0][0] = 1; ll ans = 0, val; for(; x; x /= 10, cr ^= 1) { int bit = x % 10; memset(f[cr ^ 1], 0, sizeof f[cr]); for(int i = 0; i < 3; i ++) for(int n_2 = 0; n_2 < 60; n_2 ++) for(int n_3 = 0; n_3 < 38; n_3 ++) for(int n_5 = 0; n_5 < 27; n_5 ++) for(int n_7 = 0; n_7 < 22; n_7 ++) if (val = f[cr][i][n_2][n_3][n_5][n_7]) { ll q1 = r1 / pw[2][n_2] / pw[3][n_3] / pw[5][n_5] / pw[7][n_7]; ll p1 = (l1 - 1) / pw[2][n_2] / pw[3][n_3] / pw[5][n_5] / pw[7][n_7]; if (q1 >= 1 && p1 <= 0) ans += val; if (q1 <= 0) continue; for(int p = 1; p < 10; p ++) { int ni = merge(i, p, bit); int c_2 = n_2 + co[p][2]; int c_3 = n_3 + co[p][3]; int c_5 = n_5 + co[p][5]; int c_7 = n_7 + co[p][7]; if (c_2 >= 60 || c_3 >= 38 || c_5 >= 27 || c_7 >= 22) continue; f[cr ^ 1][ni][c_2][c_3][c_5][c_7] += val; } } } for(int i = 0; i < 2; i ++) for(int n_2 = 0; n_2 < 60; n_2 ++) for(int n_3 = 0; n_3 < 38; n_3 ++) for(int n_5 = 0; n_5 < 27; n_5 ++) for(int n_7 = 0; n_7 < 22; n_7 ++) if (val = f[cr][i][n_2][n_3][n_5][n_7]) { ll q1 = r1 / pw[2][n_2] / pw[3][n_3] / pw[5][n_5] / pw[7][n_7]; ll p1 = (l1 - 1) / pw[2][n_2] / pw[3][n_3] / pw[5][n_5] / pw[7][n_7]; if (q1 >= 1 && p1 <= 0) ans += val; } return ans; } ll calc_with_zero(ll x) { if (l1) return 0; static ll g[2][3][2][2]; memset(g, 0, sizeof g); int cr = 0; ll ans = 0; g[0][1][0][0] = 1; for(; x; x /= 10, cr ^= 1) { int bit = x % 10; memset(g[cr ^ 1], 0, sizeof g[cr]); for(int i = 0; i < 3; i ++) for(int j = 0; j < 2; j ++) for(int hd = 0; hd < 2; hd ++) if (g[cr][i][j][hd]) { if (hd && j) ans += g[cr][i][j][hd]; for(int p = 0; p < 10; p ++) { int ni = merge(i, p, bit); int nj = (j | (p == 0)); int hdt = (p > 0); g[cr ^ 1][ni][nj][hdt] += g[cr][i][j][hd]; } } } return ans + g[cr][0][1][1] + g[cr][1][1][1]; } ll calc(long long x) { return calc_no_zero(x) + calc_with_zero(x); } int main() { // freopen("count.in","r",stdin); // freopen("count.out","w",stdout); for(int i = 1; i < 10; i ++) { for(int j = 2; j < 10; j ++) for(int k = i; k % j == 0; k /= j) co[i][j] ++; pw[i][0] = 1; for(int j = 1; j <= 60; j ++) pw[i][j] = pw[i][j - 1] * i; } cin >> l >> r >> l1 >> r1; ll ans = 0; if (!l) ans += (l1 == 0), ++ l; if (l <= r) ans += calc(r) - calc(l - 1); cout << ans << endl; return 0; }
T3 保护
表示只能想到最暴力的方法:
建树后,根据军队保护的范围枚举,为边加边权,然后每个重要人物到根节点的路径也挨个枚举 但是好像写挂了,一分没有 qwq
想过树剖+线段树的做法:
树剖,然后线段树维护区间最小值,军队的保护可以做线段树的区间加法
也不知道对不对的做法,关键是不会啊 弱的一批
好像还有些用倍增做的童鞋,然而出了奇奇怪怪的错误,导致。。。
#include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <cmath> using namespace std; const int M = 200005; int n, m, t, tot; int cap[M*2]; int to[M*2], net[M*2], head[M]; int deep[M], top[M], size[M], dad[M]; struct nond { int id, sum; int v, k; } e[M]; void add(int u, int v) { to[++tot] = v; net[tot] = head[u]; head[u] = tot; to[++tot] = u; net[tot] = head[v]; head[v] = tot; } void dfs(int now) { size[now] = 1; deep[now] = deep[dad[now]] + 1; for (int i = head[now]; i; i = net[i]) if (to[i] != dad[now]) { dad[to[i]] = now; dfs(to[i]); size[now] += size[to[i]]; } } void dfsl(int now) { int t = 0; if (!top[now]) top[now] = now; for (int i = head[now]; i; i = net[i]) if (to[i] != dad[now] && size[t] > size[to[i]]) t = to[i]; if (t) { top[t] = top[now]; dfsl(t); } for (int i = head[now]; i; i = net[i]) if (to[i] != dad[now] && to[i] != t) dfsl(to[i]); } int lca(int x, int y) { while (top[x] != top[y]) { if (deep[top[x]] < deep[top[y]]) swap(x, y); x = dad[top[x]]; } return deep[x] > deep[y] ? y : x; } void change(int u, int v) { for (int i = head[v]; i; i = net[i]) { if (to[i] == u) { for (int j = head[u]; j; j = net[j]) if (to[j] == v) { cap[j]++; break; } cap[i]++; return ; } if (to[i] = dad[v]) { cap[i]++; for (int j = head[u]; j; j = net[j]) if (to[j] == v) cap[j]++; } v = dad[v]; } } void fun(int now) { int u = e[now].v, tmp = e[now].k; for (int i = head[u]; i; i = net[i]) { if (to[i] == 1) if (cap[i] >= tmp) { e[now].sum++; return ; } if (to[i] == dad[u]) if (cap[i] >= tmp) e[now].sum++, u = dad[u]; } } bool cmp1(nond x, nond y) { if (deep[x.v] == deep[y.v]) return x.k > y.k; return deep[x.v] > deep[y.v]; } bool cmp2(nond x, nond y) { return x.id < y.id; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); add(u, v); } dfs(1); dfsl(1); for (int i = 1; i <= m; i++) { int u, v; scanf("%d%d", &u, &v); if (u == v) continue; int S = lca(u, v); // printf("%d\n", S); if (S == u) change(S, v); else if (S == v) change(S, u); else change(S, u), change(S, v); } scanf("%d", &t); for (int i = 1; i <= t; i++) scanf("%d%d", &e[i].v, &e[i].k); sort(e + 1, e + t + 1, cmp1); for (int i = 1; i <= t; i++) if (e[i].v == e[i - 1].v) e[i].sum = e[i - 1].sum; else fun(i); sort(e + 1, e + t + 1, cmp2); for (int i = 1; i <= t; i++) printf("%d\n", e[i].sum); return 0; }
正解:
启发式合并维护子树的线段树。询问时可以在维护出来的u的那棵线段树上走,相当于找第k小数。复杂度O((n+q)logn)。
#include <bits/stdc++.h> using namespace std; const int maxn = 200005; struct node { int l,r,cnt; } T[maxn * 100]; vector<int> lk[maxn]; int fa[maxn][20], dep[maxn], ord[maxn], cnt, n, m, ans[maxn]; void dfs(int now, int pre) { dep[now] = dep[pre] + 1; fa[now][0] = pre; for (int i = 1; (1 << i) <= dep[now]; i++) fa[now][i] = fa[fa[now][i - 1]][i - 1]; for (int i = 0; i < lk[now].size(); i ++) if (lk[now][i] != pre) dfs(lk[now][i], now); } void insert(int l, int r, int p, int &jd) { if (!jd) jd = ++ cnt; T[jd].cnt ++; if (l == r) return; int mid = l + r >> 1; if (p <= mid) insert(l, mid, p, T[jd].l); else insert(mid + 1, r, p, T[jd].r); } int merge(int l, int r, int a, int b) { if ((!a) || (!b)) return a + b; int jd = ++ cnt; T[jd].cnt = T[a].cnt + T[b].cnt; if (l == r) return jd; int mid = l + r >> 1; T[jd].l = merge(l, mid, T[a].l, T[b].l); T[jd].r = merge(mid + 1, r, T[a].r, T[b].r); return jd; } int find_k(int l, int r, int k, int jd) { if (T[jd].cnt < k) return (1 << 30); if (l == r) return l; int mid = l + r >> 1; if (T[T[jd].l].cnt >= k) return find_k(l, mid, k, T[jd].l); return find_k(mid + 1, r, k - T[T[jd].l].cnt, T[jd].r); } void dfs_w(int now, int pre) { for(int i = 0; i < lk[now].size(); i ++) if (lk[now][i] != pre) { dfs_w(lk[now][i], now); ord[now] = merge(1, n, ord[now], ord[lk[now][i]]); } } int get_lca(int u, int v) { if (dep[u] > dep[v]) swap(u,v); for(int i = 18; i + 1; i --) if (dep[fa[v][i]] >= dep[u]) v = fa[v][i]; if (u == v) return u; for(int i = 18; i + 1; i --) if (fa[v][i] != fa[u][i]) v = fa[v][i], u = fa[u][i]; return fa[u][0]; } int main() { // freopen("guard.in","r",stdin); // freopen("guard.out","w",stdout); scanf("%d%d", &n, &m); for(int i = 1, u, v; i < n; i ++) { scanf("%d%d", &u, &v); lk[u].push_back(v), lk[v].push_back(u); } dfs(1, 0); for(int i = 1, u, v; i <= m; i ++) { scanf("%d%d", &u, &v); int p = get_lca(u, v); insert(1, n, dep[p], ord[u]), insert(1, n, dep[p], ord[v]); } dfs_w(1, 0); int q; scanf("%d", &q); for(int i = 1; i <= q; i ++) { int u, k; scanf("%d%d", &u, &k); printf("%d\n", max(0, dep[u] - find_k(1, n, k, ord[u]))); } return 0; }