ubuntu安装CUDA
因为深度学习需要用到CUDA,所以写篇博客,记录下自己安装CUDA 的过程。
1 安装前的检查
安装CUDA之前,首先要做一些事情,检查你的机器是否可以安装CUDA。
1.1 检查你的gpu是否是可以安装CUDA 的
运行如下命令:
$ lspci | grep -i nvidia
- 1
这个是我的机器的返回结果:
01:00.0 VGA compatible controller: NVIDIA Corporation GM107 [GeForce GTX 750 Ti] (rev a2)
01:00.1 Audio device: NVIDIA Corporation Device 0fbc (rev a1)
- 1
- 2
- 3
1.2 检查你的linux版本是否支持CUDA
运行如下命令:
uname -m && cat /etc/*release
- 1
我的机器返回结果如下:
x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.2 LTS"
NAME="Ubuntu"
VERSION="14.04.2 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.2 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
DISTRIB_ID=Ubuntu Kylin
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu Kylin 14.04"
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
x86_64代表你的机器是64位的,剩下的是解释的linux发行版信息。
如果是红帽,可能是这样的信息:
x86_64
Red Hat Enterprise Linux Workstation release 6.0 (Santiago)
- 1
- 2
- 3
CUDA只支持一些特定的linux发行版,有Fedora,OpenSuSE,RHEL,CentOS,SLES,Ubuntu.
1.3 验证操作系统是否安装了gcc
在使用CUDA Tookit 开发的时候,gcc是需要的,但是运行CUDA程序的时候不需要。
gcc -v
- 1
我的结果是:
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/4.7/lto-wrapper
Target: x86_64-linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubuntu/Linaro 4.7.3-12ubuntu1' --with-bugurl=file:///usr/share/doc/gcc-4.7/README.Bugs --enable-languages=c,c++,go,fortran,objc,obj-c++ --prefix=/usr --program-suffix=-4.7 --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --with-gxx-include-dir=/usr/include/c++/4.7 --libdir=/usr/lib --enable-nls --with-sysroot=/ --enable-clocale=gnu --enable-libstdcxx-debug --enable-gnu-unique-object --disable-libmudflap --enable-plugin --with-system-zlib --enable-objc-gc --with-cloog --enable-cloog-backend=ppl --disable-cloog-version-check --disable-ppl-version-check --enable-multiarch --disable-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --with-tune=generic --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu
Thread model: posix
gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
1.4 验证linux内核是否有正确的系统头文件
输入:
uname -r
- 1
结果为:
3.16.0-53-generic
- 1
- 2
如果没有出现结果,就需要如下命令进行安装:
sudo apt-get install linux-headers-$(uname -r)
- 1
2 安装CUDA-Toolkit
点击官网链接:CUDA-Toolkit ,在Select Target Platform里,点击linux,86_64,Ubuntu,14.04,deb[network],之后网页会自动弹出来安装指令:
Installation Instructions:
`sudo dpkg -i cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64.deb
`
`sudo apt-get update`
`sudo apt-get install cuda`
- 1
- 2
- 3
- 4
- 5
deb[network]和deb[local]的区别就是,local是把完整的安装文件一次下载下来后安装,而network是在线下载。依次运行这三个命令,可以将CUDA安装成功。
我在执行第一步的时候,出现了这个错误:
ws@ws-Lenovo:/media/ws/000F9A5700006688/Downloads$ sudo dpkg -i cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64.deb
1404-8-0-local-ga2_8.0.61-1_amd64.deb
(Reading database ... 280787 files and directories currently installed.)
Preparing to unpack cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64.deb ...
Unpacking cuda-repo-ubuntu1404-8-0-local-ga2 (8.0.61-1) over (8.0.61-1) ...
Setting up cuda-repo-ubuntu1404-8-0-local-ga2 (8.0.61-1) ...
run-parts: failed to stat component /etc/apt/trusted.gpg.d/wps-office-archive-keyring.gpg: No such file or directory
OK
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
之后我把wps-office给卸载了就没有问题了,应该是wps软连接的问题吧。以下是成功的信息:
ws@ws-Lenovo:/media/ws/000F9A5700006688/Downloads$ sudo dpkg -i cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64.deb
(Reading database ... 279398 files and directories currently installed.)
Preparing to unpack cuda-repo-ubuntu1404-8-0-local-ga2_8.0.61-1_amd64.deb ...
Unpacking cuda-repo-ubuntu1404-8-0-local-ga2 (8.0.61-1) over (8.0.61-1) ...
Setting up cuda-repo-ubuntu1404-8-0-local-ga2 (8.0.61-1) ...
OK
- 1
- 2
- 3
- 4
- 5
- 6
- 7
3 安装之后要做的事
在安装之后,我们还需要做一些工作,才能真正完成CUDA的安装。
3.1 必须要做的事
添加CUDA的bin目录到PATH环境变量:
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
- 1
之后在控制台输入nvcc –version,可以得到如下信息:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Tue_Jan_10_13:22:03_CST_2017
Cuda compilation tools, release 8.0, V8.0.61
- 1
- 2
- 3
- 4
- 5
3.2 建议要做的事
之后我们可以安装一些官方的CUDA例子,来检验我们是否安装成功了。
进入CUDA目录/usr/local/cuda-8.0/bin,会发现在这个目录下,有一个名为cuda-install-samples-8.0.sh的文件,在控制台使用命令:
sudo sh cuda-install-samples-8.0.sh "例子被创建的目录"
- 1
我使用的是/home目录。在我的/home目录下,有一个NVIDIA_CUDA-8.0_Samples 文件夹,里面就是官方的例子,进入这个目录,输入make进行编译。
sudo make
- 1
需要相当长一段时间才能编译完成。我在编译第三个sample的时候,遇到了一个错误
/usr/bin/ld: cannot find -lnvcuvid
- 1
刚开始以为是安装出错了,因为之前安装失败过一次,又手动把CUDA给卸载了。结果发现,是英伟达显卡驱动版本不同导致的.在NVIDIA_CUDA-7.0_Samples/3_Imaging/cudaDecodeGL/findgllib.mk文件中,
UBUNTU_PKG_NAME = "nvidia-367"
- 1
- 2
而我的英伟达驱动是375,于是只要把这行代码改成
UBUNTU_PKG_NAME = "nvidia-375"
- 1
- 2
就可以了,然后所有的例子都顺利的编译通过了。在编译完所有例子以后,会提示:
Finished building CUDA samples
- 1
之后运行一些例子,编译好的二进制文件,保存在~/NVIDIA_CUDA-8.0_Samples/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release 中,进入这个目录,输入ls,看到很多编译好的二进制文件。先运行deviceQuery。输入
sudo ./deviceQuery
- 1
可以看到如下运行结果:
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 750 Ti"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 5.0
Total amount of global memory: 2000 MBytes (2096824320 bytes)
( 5) Multiprocessors, (128) CUDA Cores/MP: 640 CUDA Cores
GPU Max Clock rate: 1189 MHz (1.19 GHz)
Memory Clock rate: 2700 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 750 Ti
Result = PASS
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
在运行bandwidthTest
sudo ./bandwidthTest
- 1
可以看到结果:
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: GeForce GTX 750 Ti
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 6539.7
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 6537.2
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 74576.4
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
到此,CUDA算是已经安装完毕了。