算法导论(第三版)Exercises4.2(第四章二节)

时间:2023-02-11 12:22:09

4.2-1(计算结果)

18  14

62  66

4.2-2(Strassen算法计算矩阵乘法)

void multiplyMatrix(int a[], int b[], int n, int result[])
{
int i, j, dim=n/;
int n1=(n/) * (n/);
int a11[n1], a12[n1], a21[n1], a22[n1];
int b11[n1], b12[n1], b21[n1], b22[n1]; int s1[n1], s2[n1], s3[n1], s4[n1], s5[n1];
int s6[n1], s7[n1], s8[n1], s9[n1], s10[n1]; int p1[n1], p2[n1], p3[n1], p4[n1];
int p5[n1], p6[n1], p7[n1]; int c11[n1], c12[n1], c21[n1], c22[n1]; if(n == )
{
result[] = a[] * b[];
return;
}
if(n% != )
{
printf("wrong array!\n");
return;
} divideMatrix(a, n, a11, a12, a21, a22);
divideMatrix(b, n, b11, b12, b21, b22);
subtractMatrix(b12, b22, dim, s1);
addMatrix(a11, a12, dim, s2);
addMatrix(a21, a22, dim, s3);
subtractMatrix(b21, b11, dim, s4);
addMatrix(a11, a22, dim, s5);
addMatrix(b11, b22, dim, s6);
subtractMatrix(a12, a22, dim, s7);
addMatrix(b21, b22, dim, s8);
subtractMatrix(a11, a21, dim, s9);
addMatrix(b11, b12, dim, s10); multiplyMatrix(a11, s1, dim, p1);
multiplyMatrix(s2, b22, dim, p2);
multiplyMatrix(s3, b11, dim, p3);
multiplyMatrix(a22, s4, dim, p4);
multiplyMatrix(s5, s6, dim, p5);
multiplyMatrix(s7, s8, dim, p6);
multiplyMatrix(s9, s10, dim, p7); addMatrix(p5, p4, dim, c11);
subtractMatrix(c11, p2, dim, c11);
addMatrix(c11, p6, dim, c11);
addMatrix(p1, p2, dim, c12);
addMatrix(p3, p4, dim, c21);
addMatrix(p5, p1, dim, c22);
subtractMatrix(c22, p3, dim, c22);
subtractMatrix(c22, p7, dim, c22); combineMatrix(c11, c12, c21, c22, dim, result);
} void addMatrix(int a[], int b[], int n, int result[])
{
int i;
for(i=; i<n*n; i++) result[i] = a[i] + b[i];
} void subtractMatrix(int a[], int b[], int n, int result[])
{
int i;
for(i=; i<n*n; i++) result[i] = a[i] - b[i];
} void divideMatrix(int a[], int n, int a11[], int a12[], int a21[], int a22[])
{
int i, mid, j, k, h;
mid = n / ;
for(i=; i<mid; i++)
{
for(j=; j<mid; j++)
{
h = i * mid + j;
k = i * n + j;
a11[h] = a[k];
a12[h] = a[k+mid];
a21[h] = a[k+n*n/];
a22[h] = a[k+n*n/+mid];
}
}
} void combineMatrix(int a11[], int a12[], int a21[], int a22[], int n, int result[])
{
int i, j, h, k, dim, mid;
mid = n;
dim = mid * ;
for(i=; i<mid; i++)
{
for(j=; j<mid; j++)
{
h = i * mid + j;
k = i * dim + j;
result[k] = a11[h];
result[k+mid] = a12[h];
result[k+n*n*] = a21[h];
result[k+n*n*+mid] = a22[h];
}
}
}

4.2-3

当矩阵的n不是2的指数时,添加0补足,即可按上述算法运行

4.2-4

21

4.2-5

72x72的那个最佳,比Strassen算法好

4.2-6

当knXn矩阵时,按4.2-3的方法处理,同样nXkn也一样,可以看出nXkn计算时间短

4.2-7(用数组存储复数)

void multiplyComplex(double c1[], double c2[], double result[])
{
double p1, p2, p3;
p1 = c1[] + c1[];
p2 = c2[] + c2[];
p1 = p1 * p2;
p2 = c1[] * c2[];
p3 = c1[] * c2[];
result[] = p2 - p3;
result[] = p1 - p2 - p3;
}

算法导论(第三版)Exercises4.2(第四章二节)的更多相关文章

  1. 算法导论&lpar;第三版&rpar;Exercises2&period;3&lpar;归并排序、二分查找、计算集合中是否有和为X的2个元素&rpar;

    2.3-1: 3 9 26 38 41 49 52 59 3 26 41 52   9 38 49 57 3 41   52 26   38 57   9 49 3   41  52  26  38  ...

  2. 算法导论&lpar;第三版&rpar;Problems2&lpar;归并插入排序、数列逆序计算)

    讨论内容不说明,仅提供相应的程序. 2.1:归并插入排序θ(nlgn) void mergeInsertionSort(int a[], int l, int r, int k) { int m; & ...

  3. 算法导论&lpar;第三版&rpar;Exercises2&period;1&lpar;插入排序、线性查找、N位大数相加&rpar;

    关于练习程序的说明参见置顶的那篇. 2.1-1: 31 41 59 26 41 58 31 41 59 26 41 58 31 41 59 26 41 58 26 31 41 59 41 58 26 ...

  4. 《CSS权威指南(第三版)》---第四章 值和单位

    本章主要讲解的是一些属性声明用的值: CSS中的值主要有数字,百分数,颜色, 1.颜色: rgb(100%,100%,100%)  OR  rgb(255,255,255) OR #FF0000 WE ...

  5. 第三周学习java第四章学习总结及体会!

    第三周java 2第四章的学习总结: 一.主要内容(类与对象): 1.类: 2.构造方法与对象的创建: 3.类与程序的基本结构: 4.参数传值: 5.对象的组合: 6.实例成员与类成员: 7.方法重载 ...

  6. 《C&plus;&plus;Primer》第五版习题解答--第四章【学习笔记】

    [C++Primer]第五版习题解答--第四章[学习笔记] ps:答案是个人在学习过程中书写,可能存在错漏之处,仅作参考. 作者:cosefy Date: 2020/1/11 第四章:表达式 练习4. ...

  7. 算法导论 第三章 and 第四章

    第三章 渐进的基本O().... 常用函数 % 和  // 转换 斯特林近似公式 斐波那契数 第四章 分治策略:分解(递归)--解决(递归触底)--合并 求解递归式的3种方法: 1:代入法(替代法): ...

  8. Windows程序设计&lpar;第五版&rpar;学习:第四章 文本输出

    第四章 文本输出 1,客户区:整个应用程序窗口中没有被标题栏.边框.菜单栏.工具栏.状态栏和滚动条占用的区域.简而言之,客户区就是窗口中程序可以在上面绘制并向用户传达可视化信息的区域.   2,大多数 ...

  9. JavaScript高级程序设计第三版-读书笔记(1-3章)

    这是我第一次用markdown,也是我第一次在网上记录我自己的学习过程. 第一章 JavaScript主要由以下三个不同的部分构成 ECMAScript   提供核心语言功能 DOM     提供访问 ...

随机推荐

  1. 自己总结SVN必知点

    1.只有添加或删除文件,才与xcodeproj文件有关 2.本地新建文件,为未知文件,符号为问号?,添加文件先add为A文件后,再commit         3.删除文件为叹号,右键删除为D,删除本 ...

  2. MySQL 基础语句

    MySQL 基础语句 多个知识点 ----------------------------------------------------------------------------------- ...

  3. 10&period;23lamp环境

    前序: 查考文章:http://www.cnblogs.com/mchina/archive/2012/11/28/2778779.html http://www.centos.bz/2011/09/ ...

  4. css3学习笔记之按钮

    基本按钮样式 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 <!DOCTYPE ht ...

  5. mergeIDE

    Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CriticalDe ...

  6. Head First SQL笔记

    看的时候总结了一下,如下: Chapter 1: 创建数据库 CREATE DATABASE database_name; 使用数据库 USE database_name; 创建表 CRATE TAB ...

  7. django模板引擎自定义变量

    定义临时变量: {% with i=1 %} {{i}} {% endwith %} 定义对临时变量操作的tag 在templatetags中创建set_val.py 内容是 from django ...

  8. eclipse 安装 maven

    一共需要3个步骤,1 安装maven环境   2  安装eclipse的maven插件   3 配置eclipse的maven环境 1. 安装maven环境 1.1  下载    去网址http:// ...

  9. Spring基础之 反射&lpar;Reflection&rpar;

    1.了解Class package com.inspire.reflection.Class_api; import java.lang.reflect.Constructor; import jav ...

  10. Spring注解之 Transactional

    @Transcational 用于事务回滚 @Transcational属性如下: 属性 类型 描述 value String 可选的限定描述符,制定使用的事务管理器 propogation enum ...