[BZOJ 1907] 树的路径覆盖 【树形DP】

时间:2024-04-15 09:37:21

题目链接:BZOJ - 1907

题目分析

使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点)。

f[x][1] 表示以 x 为根的子树可以与 x 的父亲连接的最小路径数。

转移的方式非常巧妙,Orz PoPoQQQ 的 blog 。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const int MaxN = 10000 + 5; int T, n;
int f[MaxN][2]; struct Edge
{
int v;
Edge *Next;
} E[MaxN * 2], *P = E, *Point[MaxN]; inline void AddEdge(int x, int y)
{
++P; P -> v = y;
P -> Next = Point[x]; Point[x] = P;
} inline int gmin(int a, int b) {return a < b ? a : b;} void Solve(int x, int Fa)
{
f[x][0] = f[x][1] = 1;
int Temp = 0;
for (Edge *j = Point[x]; j; j = j -> Next)
{
if (j -> v == Fa) continue;
Solve(j -> v, x);
f[x][0] = gmin(f[x][0] + f[j -> v][0], f[x][1] + f[j -> v][1] - 1);
f[x][1] = gmin(f[x][1] + f[j -> v][0], Temp + f[j -> v][1]);
Temp += f[j -> v][0];
}
} int main()
{
scanf("%d", &T);
for (int Case = 1; Case <= T; ++Case)
{
memset(E, 0, sizeof(E)); P = E;
memset(Point, 0, sizeof(Point));
scanf("%d", &n);
int a, b;
for (int i = 1; i <= n - 1; ++i)
{
scanf("%d%d", &a, &b);
AddEdge(a, b);
AddEdge(b, a);
}
Solve(1, 0);
printf("%d\n", f[1][0]);
}
return 0;
}