pandas 对每一列数据进行标准化的方法

时间:2021-10-22 07:08:42

两种方式

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
>>> import numpy as np
>>> import pandas as pd
Backend TkAgg is interactive backend. Turning interactive mode on.
>>> np.random.seed(1)
>>> df_test = pd.DataFrame(np.random.randn(4,4)* 4 + 3)
>>> df_test
   0   1   2   3
0 9.497381 0.552974 0.887313 -1.291874
1 6.461631 -6.206155 9.979247 -0.044828
2 4.276156 2.002518 8.848432 -5.240563
3 1.710331 1.463783 7.535078 -1.399565
>>> df_test_1 = df_test
>>> df_test.apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x))) #方法一
   0   1   2   3
0 1.000000 0.823413 0.000000 0.759986
1 0.610154 0.000000 1.000000 1.000000
2 0.329499 1.000000 0.875624 0.000000
3 0.000000 0.934370 0.731172 0.739260
 
>>> (df_test_1 - df_test_1.min()) / (df_test_1.max() - df_test_1.min())#方法二
   0   1   2   3
0 1.000000 0.823413 0.000000 0.759986
1 0.610154 0.000000 1.000000 1.000000
2 0.329499 1.000000 0.875624 0.000000
3 0.000000 0.934370 0.731172 0.739260

结果一致且正确

以上这篇pandas 对每一列数据进行标准化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/xiaosebi1111/article/details/50249187