首先,感谢参考的博文:http://www.cnblogs.com/pkuoliver/archive/2010/10/06/sotry-about-sqrt.html
由于最神奇的一种方法是我的一个偶像Carmack提出的,所以,就将这几种开方方法调试做了比较,
上代码
/*
* sqrt 的实现,即开根号
*/
#include <math.h>
#include <time.h>
#include <iostream>
#include <windows.h>
// 方案一 : 二分法
float eps = 1e-7;
float sqrtByBinary(const float n)
{
if (n < 0)
return -1;
float smalls = 0, big = n;
float mid = (smalls + big) / 2;
float cur;
do {
if (mid*mid > n)
big = mid;
else
smalls = mid;
cur = mid;
mid = (smalls + big) / 2;
} while (abs(mid - cur) > eps);
return mid;
}
// 方案二 ; 函数库中的 sqrt
float sqrtByMath(const float n)
{
if (n < 0)
return -1;
float t = sqrt(n);
return sqrt(n);
}
// 方案三 牛顿方法递减?
float sqrtByNewton(const float n)
{
if (n < 0)
return -1;
float last,val = n;
do {
last = val;
val = (val + n / val) / 2;
} while (abs(last - val) > eps);
return last;
}
// 方案四 卡马克的神奇方法 ----------------------------
float sqrtByQ(float n)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = n*0.5F;
y = n;
i = *(long*)&y;
i = 0x5f3759df - (i >> 1);
// 0x5f3759df //Carmack 的
// 0x5f37642f //Lomont 理论推导出的
// 0x5f375a86 //Lomont 暴力计算出的
y = *(float*)&i;
y = y*(threehalfs - (x2*y*y)); //1st iteration
y = y*(threehalfs - (x2*y*y)); //2st iteration
return 1/y;
}
using namespace std;
void Test2()
{
unsigned int loopCount = 10000;
const int n = 65535;
time_t t1, t2,t3;
LARGE_INTEGER d1, d2, d3, d4,d5, d;
QueryPerformanceFrequency(&d);
float sqrtN1 = sqrtByBinary(n);
t1 = time(NULL);
QueryPerformanceCounter(&d1);
for(int i = 0; i < loopCount;i++)
sqrtN1 = sqrtByBinary(n);
float sqrtN2 = sqrtByMath(n);
t2 = time(NULL);
QueryPerformanceCounter(&d2);
for (int i = 0; i < loopCount; i++)
sqrtN2 = sqrtByMath(n);
t3 = time(NULL);
QueryPerformanceCounter(&d3);
float sqrtN3 = sqrtByNewton(n);
for (int i = 0; i < loopCount; i++)
sqrtN3 = sqrtByNewton(n);
QueryPerformanceCounter(&d4);
float sqrtN4 = sqrtByQ(n);
for (int i = 0; i < loopCount; i++)
sqrtN4 = sqrtByQ(n);
QueryPerformanceCounter(&d5);
printf(" 统计sqrt(65536)计算多次的不同方法的时间效率,次数:%d\n", loopCount);
printf("-----------------------------------------------------------------\n");
printf("%10s%20s%20s\n", "方法", "时间", "计算结果");
printf("%10s%20.2f%20.8f\n", "二分法", (double)d2.QuadPart - (double)d1.QuadPart, sqrtN1);
printf("%10s%20.2f%20.8f\n", "系统函数", (double)d3.QuadPart - (double)d2.QuadPart ,sqrtN2);
printf("%10s%20.2f%20.8f\n", "Newton", (double)d4.QuadPart - (double)d3.QuadPart, sqrtN3);
printf("%10s%20.2f%20.8f\n", "Carmack", (double)d5.QuadPart - (double)d4.QuadPart, sqrtN4);
printf("%10s%20.2f%20.8f\n", "Newton(秒)", ((double)d4.QuadPart - (double)d3.QuadPart)/d.QuadPart, sqrtN3); printf("-----------------------------------------------------------------\n");
}
void main()
{
Test2();
system("pause");
}