The Perfect Stall题解
Hal Burch
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls,
but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and,
of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
PROGRAM NAME: stall4
INPUT FORMAT
Line 1: | One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. |
Line 2..N+1: | N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow. |
OUTPUT FORMAT
A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
描述
农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术。不幸的是,由于工程问题,每个牛栏都不一样。第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们喜欢的那些牛栏中产奶。上个星期,农夫约翰刚刚收集到了奶牛们的爱好的信息(每头奶牛喜欢在哪些牛栏产奶)。一个牛栏只能容纳一头奶牛,当然,一头奶牛只能在一个牛栏中产奶。
给出奶牛们的爱好的信息,计算最大分配方案。
[编辑]格式
PROGRAM NAME: stall4
INPUT FORMAT:
(file stall4.in)
第一行 两个整数,N (0 <= N <= 200) 和 M (0 <= M <= 200) 。N 是农夫约翰的奶牛数量,M 是新牛棚的牛栏数量。
第二行到第N+1行 一共 N 行,每行对应一只奶牛。第一个数字 (Si) 是这头奶牛愿意在其中产奶的牛栏的数目 (0 <= Si <= M)。后面的 Si 个数表示这些牛栏的编号。牛栏的编号限定在区间 (1..M) 中,在同一行,一个牛栏不会被列出两次。
OUTPUT FORMAT:
(file stall4.out)
只有一行。输出一个整数,表示最多能分配到的牛栏的数量.
[编辑]SAMPLE
INPUT
5 5 2 2 5 3 2 3 4 2 1 5 3 1 2 5 1 2
[编辑]SAMPLE
OUTPUT
4
-------------------------------------------------分割线---------------------------------------------------
周围一群大牛说是二分图的最大匹配,于是匈牙利算法应声而出。
然而我对这短小精悍的程序抱有一丝怀疑。以下为代码:
#include<iostream> #include<cstring> using namespace std; int map[105][105]; int visit[105],flag[105]; int n,m; bool dfs(int a) { for(int i=1;i<=n;i++) { if(map[a][i] && !visit[i]) { visit[i]=1; if(flag[i]==0 || dfs(flag[i])) { flag[i]=a; return true; } } } return false; } int main() { while(cin>>n>>m) { memset(map,0,sizeof(map)); for(int i=1;i<=m;i++) { int x,y; cin>>x>>y; map[x][y]=1; } memset(flag,0,sizeof(flag)); int result=0; for(int i=1;i<=n;i++) { memset(visit,0,sizeof(visit)); if(dfs(i)) result++; } cout<<result<<endl; } return 0; }
正当我再研究这神奇的算法时,LGS大神路过#$%@^&*。
在他的指导下,我学会了用网络流(呵呵,也是现学的,dinic不太会)来构建这种二分图的匹配。
我们设左侧蓝点是牛,右侧红点是待匹配的牛栏。
那么我们虚设一个源点和汇点,并且设每条边(包括和源点、汇点相连的边)的权是1.
我们从源点出发,求出去汇点的最大流,那么这个最大流一定是最佳匹配。
以下是代码:(这个网络流模板我是用bfs写的)
/* PROG:stall4 ID:juan1973 LANG:C++ */ #include <cstdio> #include <algorithm> #include <memory.h> using namespace std; int n,m,tot,flow,cnt,aug,v,p,q,i,j,u; int map[505][505],queue[20005],pre[505]; int main() { freopen("stall4.in","r",stdin); freopen("stall4.out","w",stdout); memset(map,0,sizeof(map)); scanf("%ld%ld",&n,&m); for(i=1;i<=n;i++) { scanf("%ld",&p); for (j=1;j<=p;j++) { scanf("%ld",&q); map[i][q+n]=1; } } flow=0;cnt=n+m+1; for (i=1;i<=n;i++) map[0][i]=1; for (i=n+1;i<=m+n;i++) map[i][cnt]=1; memset(queue,0,sizeof(queue)); while(1) { memset(pre,-1,sizeof(pre)); queue[1]=0; for(p=1,q=1;p<=q;p++) { u=queue[p]; for(v=1;v<=cnt;v++) if(pre[v]<0&&map[u][v]>0) { pre[v]=u; queue[++q]=v; } if(pre[cnt]>=0)break; } if(pre[cnt]<0)break; aug=2000000000; for(v=cnt;v!=0;v=pre[v])aug=min(aug,map[pre[v]][v]); for(v=cnt;v!=0;v=pre[v]) { map[pre[v]][v]-=aug; map[v][pre[v]]+=aug; } flow+=aug; } printf("%ld\n",flow); return 0; }
usaco training 4.2.2 The Perfect Stall 最佳牛栏 题解的更多相关文章
-
USACO Section 4.2 The Perfect Stall(二分图匹配)
二分图的最大匹配.我是用最大流求解.加个源点s和汇点t:s和每只cow.每个stall和t 连一条容量为1有向边,每只cow和stall(that the cow is willing to prod ...
-
USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)
The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...
-
POJ1274 The Perfect Stall[二分图最大匹配]
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
-
poj 1247 The Perfect Stall 裸的二分匹配,但可以用最大流来水一下
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16396 Accepted: 750 ...
-
POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
-
POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
-
poj 1274 The Perfect Stall (二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17768 Accepted: 810 ...
-
poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
-
poj —— 1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26274 Accepted: 116 ...
随机推荐
-
数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
-
『c++』 模板(template)--- 参数化多态性
---恢复内容开始--- 题外话: 模板机制的设计和细节是由Bjarne Stroustrup在其1988年10月发表的名为“Parameterized Types for C++”一文中披露的. 引 ...
-
干货 | Docker文件系统的分层与隔离
现在就开始今天的分享~ M老师:docker 的很多特性都表现在它所使用的文件系统上,比如大家都知道docker的文件系统是分层的,所以它可以快速迭代,可以回滚.这个回滚机制跟github很像,每次提 ...
-
ArcGIS 10.3 安装及破解
系统环境:win7 64位操作系统. 一.ArcGIS 10.3包简介 ArcGIS 10.3 下载包含 1. ArcGIS for Desktop ArcGIS for Desktop简介: Ar ...
-
java中的选择排序之降序排列
import java.util.Arrays;//必须加载 class Demo{ public static void main(String []args){ int[] arr={3,54,4 ...
-
【转】javaUDP套接字通信
Java UDP网络编程 - 最简单示例 转自 http://blog.csdn.net/wintys/article/details/3525643 /** *UDPServer *@autho ...
-
Alsa aplay S8 U8 S16_LE S16_BE U16_LE U16_BE格式
举个例子 aplay -r 16000 -f S16_LE -D hw:0,0 -c 2 -d 3 ~/Private/Private_Tools/02_ALSA_Learning/left_1k_r ...
-
如何用jquery实现实时监控浏览器宽度
如何用jquery实现实时监控浏览器宽度 2013-06-05 14:36匿名 | 浏览 3121 次 $(window).width();这代码只能获取浏览器刷新时的那一刻的宽度,如何才能达到实时获 ...
-
【转】大数据分析中Redis怎么做到220万ops
原文:http://www.cnblogs.com/nnhy/archive/2018/01/16/Redis220.html 大数据时代,海量数据分析就像吃饭一样,成为了我们每天的工作.为了更好的为 ...
-
Spring Java-based容器配置
多年以来,Spring大量的XML配置及复杂的依赖管理饱受非议. 为了实现免XML的开发体验.Spring加入了新的配置注解以支持Java Config开发模式,当中最重要的注解就是@Configur ...