积分图像(Integral Image)的概念是由Viola和Jones在文献[1]中提出的。
积分图像中任意一点(i,j)的值ii(i,j)为原图像左上角到任意点(i,j)相应对角线区域灰度值总和。可以用如下两式迭代计算得到
s(i,j)=s(i,j-1)+i(i,j)
ii(i,j)=ii(i-1,j)+s(i,j)
求积分图像只需对原图像所有像素进行一遍扫描。
用C++编程实现如下:(pOutImage为输出的积分图,pInImage为输入的灰度图)
pOutImage[0][0]=pInImage[0][0]; for (int x=1;x<nWidth;x++) { pOutImage[x][0]=pInImage[x-1][0]+pInImage[x][0]; } for(int y=1;y<nHeight;y++) { int nSum=0; for(int x=0;x<nWidth;x++) { nSum+=pInImage[x][y]; pOutImage[x][y]=pInImage[x][y-1]+nSum; } }
OpenCV中的编程实现:
/* * icvGetAuxImages * * Get sum, tilted, sqsum images and calculate normalization factor * All images must be allocated. */ static void icvGetAuxImages( CvMat* img, CvMat* sum, CvMat* tilted, CvMat* sqsum, float* normfactor ) { CvRect normrect; int p0, p1, p2, p3; sum_type valsum = 0; sqsum_type valsqsum = 0; double area = 0.0; cvIntegral( img, sum, sqsum, tilted ); normrect = cvRect( 1, 1, img->cols - 2, img->rows - 2 ); CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, img->cols + 1 ) area = normrect.width * normrect.height; valsum = ((sum_type*) (sum->data.ptr))[p0] - ((sum_type*) (sum->data.ptr))[p1] - ((sum_type*) (sum->data.ptr))[p2] + ((sum_type*) (sum->data.ptr))[p3]; valsqsum = ((sqsum_type*) (sqsum->data.ptr))[p0] - ((sqsum_type*) (sqsum->data.ptr))[p1] - ((sqsum_type*) (sqsum->data.ptr))[p2] + ((sqsum_type*) (sqsum->data.ptr))[p3]; /* sqrt( valsqsum / area - ( valsum / are )^2 ) * area */ (*normfactor) = (float) sqrt( (double) (area * valsqsum - (double)valsum * valsum) ); }
Matlab实现代码如下:
clear all;
close all;
clc;
img=double(imread('lena.jpg'));
[m n]=size(img);
%计算积分图
I=zeros(m,n);
for i=1:m
for j=1:n
if i==1 && j==1 %积分图像左上角
I(i,j)=img(i,j);
elseif i==1 && j~=1 %积分图像第一行
I(i,j)=I(i,j-1)+img(i,j);
elseif i~=1 && j==1 %积分图像第一列
I(i,j)=I(i-1,j)+img(i,j);
else %积分图像其它像素
I(i,j)=img(i,j)+I(i-1,j)+I(i,j-1)-I(i-1,j-1);
end
end
end
reference:
[1] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-511-I-518 vol. 1.
[2] http://www.cnblogs.com/tiandsp/archive/2013/04/12/3016402.html