C Looooops(扩展欧几里德)

时间:2023-02-04 11:09:59

C Looooops

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 10   Accepted Submission(s) : 3
Problem Description
A Compiler Mystery: We are given a C-language style for loop of type
for (variable = A; variable != B; variable += C)

statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k.
 

 

Input
The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2 k) are the parameters of the loop.

The input is finished by a line containing four zeros.
 

 

Output
The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate.
 

 

Sample Input
3 3 2 163 7 2 167 3 2 163 4 2 160 0 0 0
 

 

Sample Output
0232766FOREVER
 题解:
输出lld老是wa,改成I64就过了。。。还有(LL)1<<k,也要加LL,否则还会wa
代码:
#include<iostream>
#include
<cstdio>
#include
<cstring>
#include
<cmath>
#include
<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
typedef
long long LL;
void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d
=a;
x
=1;
y
=0;
}
else{
e_gcd(b,a
%b,d,x,y);
LL temp
=x;
x
=y;
y
=temp-a/b*y;
}
}
void cal(LL a,LL b,LL c){
LL d,x,y;
e_gcd(a,b,d,x,y);
if(c%d!=0){
puts(
"FOREVER");
return;
}
x
*=c/d;
b
/=d;
if(b<0)b=-b;
x
%=b;
if(x<0)x+=b;
printf(
"%I64d\n",x);
return;
}
int main(){
LL A,B,C,k;
while(~scanf("%lld%lld%lld%lld",&A,&B,&C,&k),A|B|C|k){
//C*x+2^ky=B-A;
cal(C,(LL)1<<k,B-A);
}
return 0;
}