ZOJ 1403 解密

时间:2023-02-03 22:40:37

参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6412212.htmlSafecracker


Time Limit: 2 Seconds      Memory Limit: 65536 KB

=== Op tech briefing, 2002/11/02 06:42 CST ===

  "The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein's secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary."

v - w^2 + x^3 - y^4 + z^5 = target

  "For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn't exist then."

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

  "Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or 'no solution' if there is no correct combination. Use the exact format shown below."

Sample Input

  1 ABCDEFGHIJKL
  11700519 ZAYEXIWOVU
  3072997 SOUGHT
  1234567 THEQUICKFROG
  0 END

Sample Output

LKEBA

no solution

no solution

no solution

题意

  密码序列由一系列大写字母组成,在解密序列不唯一的情况下,按字典序输出最后一个,解密公式:v - w^2 + x^3 - y^4 + z^5 = target

  由于题目中解的值域已经确定,解元素中的v,w,x,y,z都是题目中给定集合中的一个元素,数据范围较小枚举便可。

解题思路:

由于题目中解的值域已经确定,解元素中的v,w,x,y,z都是题目中给定集合中的一个元素,数据范围较小枚举便可。

*注意:由于题目求得是密码序列是按字典顺序的最后一个,所以再次我将之先降序排序,这样一来找到的第一个符合条件的肯定便是最后的!

代码

 #include <bits/stdc++.h>
using namespace std;
char letters[];
int value[],target;
void process(int len)
{
int a,b,c,d,e;
for(a=;a<len;a++)
for(b=;b<len;b++)
if(a!=b)
for(c=;c<len;c++)
if(a!=c&&b!=c)
for(d=;d<len;d++)
if(a!=d&&b!=d&&c!=d)
for(e=;e<len;e++)
if(a!=e&&b!=e&&c!=e&&d!=e)
if(value[a]-pow(value[b],2.0)+pow(value[c],3.0)-pow(value[d],4.0)+pow(value[e],5.0)==target)
{
printf("%c%c%c%c%c\n",value[a]+'A'-,value[b]+'A'-,value[c]+'A'-,value[d]+'A'-,value[e]+'A'-);
return;
}
printf("no solution\n");
}
bool compare(int a,int b)
{
return a>b;
}
int main()
{
int i;
while(scanf("%d%s",&target,letters)!=EOF)
{
if(target==&&strcmp(letters,"END")==)
return ;
i=;
while(letters[i])
{
value[i]=letters[i]-'A'+;
i++;
}
sort(value,value+i,compare);
process(i);
}
return ;
}

出处

ZOJ 1403 解密的更多相关文章

  1. 暴力 ZOJ 1403 Safecracker

    题目传送门 /* 暴力:纯暴力,在家水水 */ #include <cstdio> #include <cstring> #include <algorithm> ...

  2. ZOJ 1403&amp&semi;&amp&semi;HDU 1015 Safecracker【暴力】

    Safecracker Time Limit: 2 Seconds      Memory Limit: 65536 KB === Op tech briefing, 2002/11/02 06:42 ...

  3. ZOJ 1403 F-Safecracker

    https://vjudge.net/contest/67836#problem/F "The item is locked in a Klein safe behind a paintin ...

  4. &lbrack;ZOJ 1006&rsqb; Do the Untwist &lpar;模拟实现解密&rpar;

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=6 题目大意:给你加密方式,请你求出解密. 直接逆运算搞,用到同余定理 ...

  5. ZOJ Problem Set - 1006 Do the Untwist

    今天在ZOJ上做了道很简单的题目是关于加密解密问题的,此题的关键点就在于求余的逆运算: 比如假设都是正整数 A=(B-C)%D 则 B - C = D*n + A 其中 A < D 移项 B = ...

  6. ZOJ 1006 Do the Untwish

    Do the Untwish 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1006 题意:给定密文按公式解密 注 ...

  7. Detect the Virus ZOJ - 3430 AC自动机

    One day, Nobita found that his computer is extremely slow. After several hours' work, he finally fou ...

  8. PHP的学习--RSA加密解密

    PHP服务端与客户端交互或者提供开放API时,通常需要对敏感的数据进行加密,这时候rsa非对称加密就能派上用处了. 举个通俗易懂的例子,假设我们再登录一个网站,发送账号和密码,请求被拦截了. 密码没加 ...

  9. ASP&period;NET加密和解密数据库连接字符串

    大家知道,在应用程序中进行数据库操作需要连接字符串,而如果没有连接字符串,我们就无法在应用程序中完成检索数据,创建数据等一系列的数据库操作.当有人想要获取你程序中的数据库信息,他首先看到的可能会是We ...

随机推荐

  1. Android Fragment应用实战

    现在Fragment的应用真的是越来越广泛了,之前Android在3.0版本加入Fragment的时候,主要是为了解决Android Pad屏幕比较大,空间不能充分利用的问题,但现在即使只是在手机上, ...

  2. 四则运算GUI版本功能展现

    对于四则运算的GUI版本实现支持批量出题,由于我的不积极导致教师没找到对应的连接,现在重新补上链接 http://www.cnblogs.com/liquan/p/5978687.html codin ...

  3. Tomcat Manager用户配置详解

      Tomcat Manager是Tomcat自带的.用于对Tomcat自身以及部署在Tomcat上的应用进行管理的web应用.Tomcat是Java领域使用最广泛的服务器之一,因此Tomcat Ma ...

  4. android 使用虚拟机安装apk&lpar;图文教程&rpar;(转)

    1.启动虚拟机 2.我的android sdk在“E:\android\android开发环境\android SDK\platform-tools”把要安装的apk复制到这个根目录(和adb.exe ...

  5. 如何知道PostgreSQL数据库下每个数据库所对应的目录

    base目录,这是所有数据库目录的父目录. 在base目录下第一层,每个目录就是一个数据库所对应的文件. 那么如何知道哪个目录对应哪个数据呢? 查询如下:先看数据库列表 [pgsql@localhos ...

  6. 第二篇Activity:2、任务和返回堆栈(Tasks and Back Stack)之基本介绍

    参考:http://developer.android.com/guide/components/tasks-and-back-stack.html 在Android中,一个应用程序里面,通常包含了多 ...

  7. Learning Cocos2d-x for WP8(6)——场景切换和场景过渡效果

    原文:Learning Cocos2d-x for WP8(6)--场景切换和场景过渡效果 C#(wp7)兄弟篇 Learning Cocos2d-x for XNA(6)——场景切换和场景过渡效果 ...

  8. MUI开发注意事项

    mui开发注意事项,有需要的朋友可以参考下. mui是一个高性能的HTML5开发框架,从UI到效率,都在极力追求原生体验:这个框架自身有一些规则,刚接触的同学不很熟悉,特总结本文:想了解mui更详细的 ...

  9. Asp&period;net web api 知多少

    本系列主要翻译自<ASP.NET MVC Interview Questions and Answers >- By Shailendra Chauhan,想看英文原版的可访问http:/ ...

  10. jenkins部署&period;net平台自动化构建

    在引入自动化部署工具的时候,我们对比了jenkins和gitlab CI,jenkins有非常丰富的插件,配置起来方便.gitlab CI更倾向于脚本配置,当然jenkins也可以使用pipeline ...