C++函数的嵌套调用
C++不允许对函数作嵌套定义,也就是说在一个函数中不能完整地包含另一个函数。在一个程序中每一个函数的定义都是互相平行和独立的。
虽然C++不能嵌套定义函数,但可以嵌套调用函数,也就是说,在调用一个函数的过程中,又调用另一个函数。
在程序中实现函数嵌套调用时,需要注意的是:在调用函数之前,需要对每一个被调用的函数作声明(除非定义在前,调用在后)。
【例】用弦截法求方程f(x)=x3-5x2+16x-80=0的根。
这是一个数值求解问题,需要先分析用弦截法求根的算法。根据数学知识,可以列出以下的解题步骤:
1) 取两个不同点x1,x2,如果f(x1)和f(x2)符号相反,则(x1,x2)区间内必有一个根。如果f(x1)与f(x2)同符号,则应改变x1,x2,直到f(x1), f(x2)异号为止。注意x1?x2的值不应差太大,以保证(x1,x2)区间内只有一个根。
2) 连接(x1, f(x1))和(x2, f(x2))两点,此线(即弦)交x轴于x,见图。
x点坐标可用下式求出:
再从x求出f(x)。
3) 若f(x)与f(x1)同符号,则根必在(x, x2)区间内,此时将x作为新的x1。如果f(x)与f(x2)同符号,则表示根在( x1,x)区间内,将x作为新的x2。
4) 重复步骤 (2) 和 (3), 直到 |f(x)|<ξ为止, ξ为一个很小的正数, 例如10-6。此时认为 f(x)≈0。
这就是弦截法的算法,在程序中分别用以下几个函数来实现以上有关部分功能:
1) 用函数f(x)代表x的函数:x3-5x2+16x-80。
2) 用函数xpoint (x1,x2)来求(x1,f(x1))和(x2,f(x2))的连线与x轴的交点x的坐标。
3) 用函数root(x1,x2)来求(x1,x2)区间的那个实根。显然,执行root函数的过程中要用到xpoint函数,而执行xpoint函数的过程中要用到f函数。
根据以上算法,可以编写出下面的程序:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
double f( double ); //函数声明
double xpoint( double , double ); //函数声明
double root( double , double ); //函数声明
int main( )
{
double x1,x2,f1,f2,x;
do
{
cout<< "input x1,x2:" ;
cin>>x1>>x2;
f1=f(x1);
f2=f(x2);
} while (f1*f2>=0);
x=root(x1,x2);
cout<<setiosflags(ios::fixed)<<setprecision(7);
//指定输出7位小数
cout<< "A root of equation is " <<x<<endl;
return 0;
}
double f( double x) //定义f函数,以实现f(x)
{
double y;
y=x*x*x-5*x*x+16*x-80;
return y;
}
double xpoint( double x1, double x2) //定义xpoint函数,求出弦与x轴交点
{
double y;
y=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)); //在xpoint函数中调用f函数
return y;
}
double root( double x1, double x2) //定义root函数,求近似根
{
double x,y,y1;
y1=f(x1);
do
{
x=xpoint(x1,x2); //在root函数中调用xpoint函数
y=f(x); //在root函数中调用f函数
if (y*y1>0)
{
y1=y;
x1=x;
}
else
x2=x;
} while ( fabs (y)>=0.00001);
return x;
}
|
运行情况如下:
1
2
|
input x1, x2:2.5 6.7↙
A root of equation is 5.0000000
|
对程序的说明:
1) 在定义函数时,函数名为f,xpoint和root的3个函数是互相独立的,并不互相从属。这3个函数均定为双精度型。
2) 3个函数的定义均出现在main函数之后,因此在main函数的前面对这3个函数作声明。
习惯上把本程序中用到的所有函数集中放在最前面声明。
3) 程序从main函数开始执行。
4) 在root函数中要用到求绝对值的函数fabs,它是对双精度数求绝对值的系统函数。它属于数学函数库,故在文件开头用#include <cmath>把有关的头文件包含进来。
C++函数的递归调用
在调用一个函数的过程中又出现直接或间接地调用该函数本身,称为函数的递归(recursive)调用。C++允许函数的递归调用。例如:
1
2
3
4
5
6
|
int f( int x)
{
int y, z;
z=f(y); //在调用函数f的过程中,又要调用f函数
return (2*z);
}
|
以上是直接调用本函数,见下面的图。
下图表示的是间接调用本函数。在调用f1函数过程中要调用f2函数,而在调用f2函数过程中又要调用f1函数。
从图上可以看到,这两种递归调用都是无终止的自身调用。显然,程序中不应出现这种无终止的递归调用,而只应出现有限次数的、有终止的递归调用,这可以用if语句来控制,只有在某一条件成立时才继续执行递归调用,否则就不再继续。
包含递归调用的函数称为递归函数。
【例】有5个人坐在一起,问第5个人多少岁?他说比第4个人大两岁。问第4个人岁数,他说比第3个人大两岁。问第3个人,又说比第2个人大两岁。问第2个人,说比第1个人大两岁。最后问第1个人,他说是10岁。请问第5个人多大?
每一个人的年龄都比其前1个人的年龄大两岁。即:
1
2
3
4
5
|
age(5)=age(4)+2
age(4)=age(3)+2
age(3)=age(2)+2
age(2)=age(1)+2
age(1)=10
|
可以用式子表述如下:
1
2
|
age(n)=10 (n=1)
age(n)=age(n-1)+2 (n>1)
|
可以看到,当n>1时,求第n个人的年龄的公式是相同的。因此可以用一个函数表示上述关系。图4.11表示求第5个人年龄的过程。
可以写出以下C++程序,其中的age函数用来实现上述递归过程。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
#include <iostream>
using namespace std;
int age( int ); //函数声明
int main( ) //主函数
{
cout<<age(5)<<endl;
return 0;
}
int age( int n) //求年龄的递归函数
{
int c; //用c作为存放年龄的变量
if (n==1) c=10; //当n=1时,年龄为10
else c=age(n-1)+2; //当n>1时,此人年龄是他前一个人的年龄加2
return c; //将年龄值带回主函数
}
|
运行结果如下:
1
|
|
【例】用递归方法求n!。
求n!可以用递推方法,即从1开始,乘2,再乘3……一直乘到n。求n!也可以用递归方法,即5!=4!×5,而4!=3!×4,…,1!=1。可用下面的递归公式表示:
1
2
|
n! = 1 (n=0, 1)
n * (n-1)! (n>1)
|
有了例4.10的基础,很容易写出本题的程序:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
#include <iostream>
using namespace std;
long fac( int ); //函数声明
int main( )
{
int n; //n为需要求阶乘的整数
long y; //y为存放n!的变量
cout<< "please input an integer :" ; //输入的提示
cin>>n; //输入n
y=fac(n); //调用fac函数以求n!
cout<<n<< "!=" <<y<<endl; //输出n!的值
return 0;
}
long fac( int n) //递归函数
{
long f;
if (n<0)
{
cout<< "n<0,data error!" <<endl; //如果输入负数,报错并以-1作为返回值
f=-1;
}
else if (n==0||n==1) f=1; //0!和1!的值为1
else f=fac(n-1)*n; //n>1时,进行递归调用
return f; //将f的值作为函数值返回
}
|
运行情况如下:
1
2
|
please input an integer:10↙
10!=3628800
|
许多问题既可以用递归方法来处理,也可以用非递归方法来处理。在实现递归时,在时间和空间上的开销比较大,但符合人们的思路,程序容易理解。