更多代码请见:https://github.com/xubo245/SparkLearning
1解释
求图中的最短路径,更多的请见参考【3】,这篇写的很详细
2.代码:
/** * @author xubo * ref http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html * time 20160503 */ package org.apache.spark.graphx.learning import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.graphx.Graph import org.apache.spark.graphx.Graph.graphToGraphOps import org.apache.spark.graphx.lib.ShortestPaths object ShortPaths { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("ShortPaths").setMaster("local[4]") val sc = new SparkContext(conf) // 测试的真实结果,后面用于对比 val shortestPaths = Set( (1, Map(1 -> 0, 4 -> 2)), (2, Map(1 -> 1, 4 -> 2)), (3, Map(1 -> 2, 4 -> 1)), (4, Map(1 -> 2, 4 -> 0)), (5, Map(1 -> 1, 4 -> 1)), (6, Map(1 -> 3, 4 -> 1))) // 构造无向图的边序列 val edgeSeq = Seq((1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)).flatMap { case e => Seq(e, e.swap) } // 构造无向图 val edges = sc.parallelize(edgeSeq).map { case (v1, v2) => (v1.toLong, v2.toLong) } val graph = Graph.fromEdgeTuples(edges, 1) // 要求最短路径的点集合 val landmarks = Seq(1, 4).map(_.toLong) // 计算最短路径 val results = ShortestPaths.run(graph, landmarks).vertices.collect.map { case (v, spMap) => (v, spMap.mapValues(i => i)) } val shortestPath1 = ShortestPaths.run(graph, landmarks) // 与真实结果对比 println("\ngraph edges"); println("edges:"); graph.edges.collect.foreach(println) // graph.edges.collect.foreach(println) println("vertices:"); graph.vertices.collect.foreach(println) // println("triplets:"); // graph.triplets.collect.foreach(println) println(); println("\n shortestPath1"); println("edges:"); shortestPath1.edges.collect.foreach(println) println("vertices:"); shortestPath1.vertices.collect.foreach(println) // println("vertices:") assert(results.toSet == shortestPaths) println("results.toSet:" + results.toSet); println("end"); sc.stop() } }
图分析:其实是无向图,但是存储的时候GraphX存的是有向图
3.结果:
分析:返回的是
(1,Map(1 -> 0, 4 -> 2)) (5,Map(1 -> 1, 4 -> 1)) (6,Map(4 -> 1, 1 -> 3))节点的属性存的是到某几点的最短路径,比如
(1,Map(1 -> 0, 4 -> 2))
表明的是1节点到1节点路径为0,到4节点为2
同理
(6,Map(4 -> 1, 1 -> 3))6号节点到4为1,到1为3,途中可以看得出来
全部结果:
graph edges edges: Edge(1,2,1) Edge(1,5,1) Edge(2,1,1) Edge(2,3,1) Edge(2,5,1) Edge(3,2,1) Edge(5,1,1) Edge(3,4,1) Edge(4,3,1) Edge(5,2,1) Edge(4,5,1) Edge(4,6,1) Edge(5,4,1) Edge(6,4,1) vertices: (4,1) (1,1) (5,1) (6,1) (2,1) (3,1) shortestPath1 edges: Edge(1,2,1) Edge(1,5,1) Edge(2,1,1) Edge(2,3,1) Edge(2,5,1) Edge(3,2,1) Edge(5,1,1) Edge(3,4,1) Edge(4,3,1) Edge(5,2,1) Edge(4,5,1) Edge(4,6,1) Edge(5,4,1) Edge(6,4,1) vertices: (4,Map(4 -> 0, 1 -> 2)) (1,Map(1 -> 0, 4 -> 2)) (5,Map(1 -> 1, 4 -> 1)) (6,Map(4 -> 1, 1 -> 3)) (2,Map(1 -> 1, 4 -> 2)) (3,Map(4 -> 1, 1 -> 2)) results.toSet:Set((1,Map(1 -> 0, 4 -> 2)), (5,Map(1 -> 1, 4 -> 1)), (2,Map(1 -> 1, 4 -> 2)), (6,Map(4 -> 1, 1 -> 3)), (4,Map(4 -> 0, 1 -> 2)), (3,Map(4 -> 1, 1 -> 2))) end
如果改为全部节点,则为:
vertices: (4,Map(5 -> 1, 1 -> 2, 6 -> 1, 2 -> 2, 3 -> 1, 4 -> 0)) (1,Map(5 -> 1, 1 -> 0, 6 -> 3, 2 -> 1, 3 -> 2, 4 -> 2)) (5,Map(5 -> 0, 1 -> 1, 6 -> 2, 2 -> 1, 3 -> 2, 4 -> 1)) (6,Map(5 -> 2, 1 -> 3, 6 -> 0, 2 -> 3, 3 -> 2, 4 -> 1)) (2,Map(5 -> 1, 1 -> 1, 6 -> 3, 2 -> 0, 3 -> 1, 4 -> 2)) (3,Map(5 -> 2, 1 -> 2, 6 -> 2, 2 -> 1, 3 -> 0, 4 -> 1))
results.toSet:Set((6,Map(5 -> 2, 1 -> 3, 6 -> 0, 2 -> 3, 3 -> 2, 4 -> 1)), (4,Map(5 -> 1, 1 -> 2, 6 -> 1, 2 -> 2, 3 -> 1, 4 -> 0)), (3,Map(5 -> 2, 1 -> 2, 6 -> 2, 2 -> 1, 3 -> 0, 4 -> 1)), (2,Map(5 -> 1, 1 -> 1, 6 -> 3, 2 -> 0, 3 -> 1, 4 -> 2)), (1,Map(5 -> 1, 1 -> 0, 6 -> 3, 2 -> 1, 3 -> 2, 4 -> 2)), (5,Map(5 -> 0, 1 -> 1, 6 -> 2, 2 -> 1, 3 -> 2, 4 -> 1)))
参考
【1】 http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html
【2】https://github.com/xubo245/SparkLearning
【3】http://blog.csdn.net/zcf1002797280/article/details/50007913