题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1190
神题。。。。。。
F[i][j]表示容量为j*2^i+W第i-1位到第0位的最大价值,
其实就是 j*2^i+W的第i-1位*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0
注意这里j的取值为0...W>>i。
我们在读入时在b相同的宝石之间做一个背包,但是注意这时F[i][j]的容量为 j*2^i,不是j*2^i+W第i-1位到第0位。
然后我们很容易得到转移方程f[i][j]=max(f[i][j-k]+F[i-1][2*k+W的第i-1位])(0<=k<=j)
我们枚举j的时候是倒着来的,所有f[i][j-k]的容量是(j-k)*2^i。
这时候f[i][j]的容量为j*2^i+W第i-1位到第0位,f[i][j-k]的容量为(j-k)*2^i,相减得:
j*2^i+W第i-1位到第0位
-(j-k)*2^i
=2k*2^(i-1)+W的第i-1位*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0
=(2k+W的第i-1位)*2^(i-1)+W的第i-2位*2^(i-2)+......+W的第0位*2^0
这个是F[i-1][2*k+W的第i-1位]的容量。
好神奇。
这样就成功解决了W这个上限的问题。
感觉这种方法在数位计数的问题中大有用处。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define re(i,a,b) for(i=a;i<=b;i++)
#define red(i,a,b) for(i=a;i>=b;i--)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define SF scanf
#define PF printf
#define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-;
inline int sgn(DB x){if(abs(x)<EPS)return ;return(x>)?:-;}
const DB Pi=acos(-1.0); inline int gint()
{
int res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
}
inline LL gll()
{
LL res=;bool neg=;char z;
for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
if(z==EOF)return ;
if(z=='-'){neg=;z=getchar();}
for(;z!=EOF && isdigit(z);res=res*+z-'',z=getchar());
return (neg)?-res:res;
} const int maxN=; int N,W;
int F[][]; int main()
{
freopen("bzoj1190.in","r",stdin);
freopen("bzoj1190.out","w",stdout);
int i,j,k;
while(SF("%d%d\n",&N,&W),N>)
{
mmst(F,);
re(i,,N)
{
int a=gint(),b=,val=gint();
while(~a&){a>>=;b++;}
red(j,,a)upmax(F[b][j],F[b][j-a]+val);
}
re(i,,)re(j,,)upmax(F[i][j],F[i][j-]);
for(i=;i<= && (<<i)<=W;i++)
for(j=min(,W>>i);j>=;j--)
for(k=;k<=j;k++) upmax(F[i][j],F[i][j-k]+F[i-][min(k+k+((W>>i-)&),)]);
PF("%d\n",F[i-][]);
}
return ;
}