题意
给定一个图,图中一些边的长度未知,问是否存在最短路长度恰好为
题解
将所有未知边长度赋为
二分边长,使得未知边长度为
此时,我们使所有未知边长度为
代码
/// by ztx
/** * Bisect to find the path len(A) < L < len(B) * continue bisecting to find a set of unknow edges to be length A * and the other edges of unknow edges to be length B */
#define Rep(i,l,r) for(i=(l);i<=(r);i++)
#define rep(i,l,r) for(i=(l);i< (r);i++)
#define Rev(i,r,l) for(i=(r);i>=(l);i--)
#define rev(i,r,l) for(i=(r);i> (l);i--)
typedef long long ll ;
typedef double lf ;
int CH , NEG ;
template <typename TP>inline void read(TP& ret) {
ret = NEG = 0 ; while (CH=getchar() , CH<'!') ;
if (CH == '-') NEG = true , CH = getchar() ;
while (ret = ret*10+CH-'0' , CH=getchar() , CH>'!') ;
if (NEG) ret = -ret ;
}
template <typename TP>inline void readc(TP& ret) {
while (ret=getchar() , ret<'!') ;
while (CH=getchar() , CH>'!') ;
}
template <typename TP>inline void reads(TP *ret) {
ret[0]=0;while (CH=getchar() , CH<'!') ;
while (ret[++ret[0]]=CH,CH=getchar(),CH>'!') ;
ret[ret[0]+1]=0;
}
#include <deque>
#include <cstring>
#define maxn 1010LL
#define maxe 10010LL
#define infi 0x3f3f3f3fLL
#define to(p) e[0][p]
#define val(p) e[1][p]
#define nxt(p) e[2][p]
int e[3][maxe<<1] = {0}, star[maxn] = {0}, tote = 1, rec[maxe] = {0}, totr = 0;
bool reced[maxe<<1] = {0};
inline void AddEdge(int u,int v,int w)
{ tote ++ , to(tote) = v, val(tote) = w, nxt(tote) = star[u], star[u] = tote;
tote ++ , to(tote) = u, val(tote) = w, nxt(tote) = star[v], star[v] = tote; }
inline void Modify(int w)
{ int i; Rep (i,1,totr) val(rec[i]) = w, val(rec[i]^1) = w; }
int n, S, T;
std::deque<int>q;
bool inq[maxn] = {0};
int dis[maxn];
#define pb push_back
#define pf push_front
#define pop pop_front
inline int SPFA() {
int u, v, p;
memset(dis,0x3f,sizeof dis);
dis[S] = 0, q.pb(S);
while (!q.empty())
for (u=q.front(),q.pop(),inq[u]=false,p=star[u];v=to(p),p;p=nxt(p))
if (dis[v] > dis[u]+val(p))
if (dis[v]=dis[u]+val(p), !inq[v])
if (inq[v]=true, !q.empty()&&dis[q.front()]>dis[v]) q.pf(v);
else q.pb(v);
return dis[T];
}
int main() {
int m, exp, i, u, v, w, L, R, M;
read(n), read(m), read(exp), read(S), read(T), S ++ , T ++ ;
rep (i,0,m) {
read(u), read(v), read(w), u ++ , v ++ ;
if (w) AddEdge(u,v,w);
else AddEdge(u,v,1), rec[++totr] = tote, reced[tote] = true, reced[tote^1] = true;
}
u = SPFA();
if (u > exp) { puts("NO"); goto END; }
if (u == exp) goto ANS;
Modify(infi); v = SPFA();
if (v < exp) { puts("NO"); goto END; }
if (v == exp) goto ANS;
L = 1, R = 1000000000;
while (R-L > 1) // (L,R] SPFA(L) < exp SPFA(R) >= exp
if (Modify(M = (L+R)/2), SPFA() < exp) L = M; else R = M;
Modify(R);
if (SPFA() == exp) goto ANS;
w = R; L = 1, R = totr;
while (R-L > 1) { // (L,R] L < exp R >= exp
M = (L+R)/2;
rep (i,1,M) val(rec[i]) = w, val(rec[i]^1) = w;
Rep (i,M,totr) val(rec[i]) = w-1, val(rec[i]^1) = w-1;
if (SPFA() < exp) L = M; else R = M;
}
rep (i,1,R) val(rec[i]) = w, val(rec[i]^1) = w;
Rep (i,R,totr) val(rec[i]) = w-1, val(rec[i]^1) = w-1;
ANS:;
puts("YES");
for (i = 2; i < tote; i += 2)
printf("%d %d %d\n", to(i^1)-1, to(i)-1, val(i));
END:;
getchar();
return 0;
}