UVALive - 6571 It Can Be Arranged 最大流

时间:2024-03-26 08:35:08

题目链接:

http://acm.hust.edu.cn/vjudge/problem/48415

It Can Be Arranged

Time Limit: 3000MS
#### 问题描述
> Every year, several universities arrange inter-university national programming contests. ACM ICPC
> Dhaka site regional competition is held every year in Dhaka and one or two teams are chosen for ACM
> ICPC World Finals.
> By observing these, MMR (Mission Maker Rahman) has made a plan to open a programming
> school. In that school, N courses are taught. Each course is taught every day (otherwise, programmers
> may forget DP while learning computational geometry!). You will be given the starting time Ai and
> finishing time Bi (inclusive) of each course i (1 ≤ i ≤ N). You will be also given the number of students
> registered for each course, Si (1 ≤ i ≤ N). You can safely assume no student has registered to two
> different courses. MMR wants to hire some rooms of a building, named Sentinel Tower, for running that
> school. Each room of Sentinel Tower has a capacity to hold as much as M students. The programmers
> (students) are very restless and a little bit filthy! As a result, when coursei
> is taken in a class room,
> after the class is finished, it takes cleanij time to clean the room to make it tidy for starting teaching
> coursej immediately just after coursei in the same room.
> Your job is to help MMR to decide the minimum number of rooms need to be hired to run the
> programming school.
#### 输入
> Input starts with an integer T (T ≤ 100) denoting the number of test cases. Each case starts with two
> integers N (1 ≤ N ≤ 100), number of courses and M (1 ≤ M ≤ 10000), capacity of a room. Next N
> lines will contain three integers Ai
> , Bi (0 ≤ Ai ≤ Bi ≤ 10000000) and Si (1 ≤ Si ≤ 10000), starting
> and finishing time of a course. Next N lines will contain the clean time matrix, where the i-th row will
> contain N integers cleanij (1 ≤ i ≤ N, 1 ≤ j ≤ N, 0 ≤ cleanij ≤ 10000000, cleanii = 0).
#### 输出
> For each case, print the test case number, starting from 1, and the answer, minimum number of rooms
> needed to be hired.

样例

sample input

3

1 5

1 60 12

0

4 1

1 100 10

50 130 3

150 200 15

80 170 7

0 2 3 4

5 0 7 8

9 10 0 12

13 14 15 0

2 1

1 10 1

12 20 1

0 2

5 0

sample output

Case 1: 3

Case 2: 22

Case 3: 2

题意

现在需要上n个课程,每个课程:(s,t,p),描述开始时间,结束时间,和上课人数。

现在有若干个最多能容纳m个人的教室,问如何用最少的教室上完所有的课。

题解

如果教室的容量没有要求,那么这将是一个经典的DAG的最少路径覆盖问题。

加了教室容量限制之后,变成了一个带权的最少路径覆盖问题。

我们可以这样建图:首先拆点,把课程i拆成i,i+n,0到i连边,i+n到2*n+1连边,边权为i课程需要的教室数,然后如果课程i上完能够接着上j,那么就连一条边权为INF的边从i到j+n。 然后跑最大流,这样跑出了的值相当于能够共用的教室数,吧总数-最大流就是答案了。

代码

#include<map>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define M (l+(r-l)/2)
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,n) for(int i=0;i<(n);i++) using namespace std; typedef long long LL; const int maxn=444;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const int mod=1e9+7; struct Edge {
int from,to,cap,flow;
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl) {}
}; struct Dinic {
int n,m,s,t;
vector<Edge> egs;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn]; void init(int n) {
this->n=n;
for(int i=0; i<=n; i++) G[i].clear();
egs.clear();
} void addEdge(int from,int to,int cap) {
egs.push_back(Edge(from,to,cap,0));
egs.push_back(Edge(to,from,0,0));
m=egs.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS() {
memset(vis,0,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty()) {
int x=Q.front();
Q.pop();
for(int i=0; i<G[x].size(); i++) {
Edge& e=egs[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow) {
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a) {
if(x==t||a==0) return a;
int flow=0,f;
for(int& i=cur[x]; i<G[x].size(); i++) {
Edge& e=egs[G[x][i]];
if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0) {
e.flow+=f;
egs[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int Maxflow(int s,int t) {
this->s=s;
this->t=t;
int flow=0;
while(BFS()) {
memset(cur,0,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}
} dinic; int n,m;
LL si[maxn],ti[maxn],C[maxn][maxn];
int wi[maxn]; void init() {
dinic.init(2*n+2);
} int main() {
int tc,kase=0;
scanf("%d",&tc);
while(tc--) {
scanf("%d%d",&n,&m);
init();
for(int i=1; i<=n; i++) {
scanf("%lld%lld%d",&si[i],&ti[i],&wi[i]);
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
scanf("%lld",&C[i][j]);
}
}
int sum=0;
for(int i=1; i<=n; i++) {
int cap=wi[i]%m?wi[i]/m+1:wi[i]/m;
sum+=cap;
dinic.addEdge(0,i,cap);
dinic.addEdge(i+n,2*n+1,cap);
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
if(ti[i]+C[i][j]<si[j]) {
dinic.addEdge(i,j+n,INF);
}
}
}
int ans=dinic.Maxflow(0,2*n+1);
printf("Case %d: %d\n",++kase,sum-ans);
}
return 0;
}