在data.table中转换*某些*列类

时间:2023-02-02 20:27:30

I want to convert a subset of data.table cols to a new class. There's a popular question here (Convert column classes in data.table) but the answer creates a new object, rather than operating on the starter object.

我想要转换数据的一个子集。新班的学生。这里有一个常见的问题(在data.table中转换列类),但答案是创建一个新对象,而不是在starter对象上操作。

Take this example:

把这个例子:

dat <- data.frame(ID=c(rep("A", 5), rep("B",5)), Quarter=c(1:5, 1:5), value=rnorm(10))
cols <- c('ID', 'Quarter')

How best to convert to just the cols columns to (e.g.) a factor? In a normal data.frame you could do this:

如何最好地将cols列转换为(例如)一个因子?在正常情况下,你可以这样做:

dat[, cols] <- lapply(dat[, cols], factor)

but that doesn't work for a data.table, and neither does this

但这对数据不适用。这个也不行

dat[, .SD := lapply(.SD, factor), .SDcols = cols]

A comment in the linked question from Matt Dowle (from Dec 2013) suggests the following, which works fine, but seems a bit less elegant.

Matt Dowle(2013年12月)在相关问题中给出了如下评论,效果不错,但似乎不那么优雅。

for (j in cols) set(dat, j = j, value = factor(dat[[j]]))

Is there currently a better data.table answer (i.e. shorter + doesn't generate a counter variable), or should I just use the above + rm(j)?

目前有更好的数据吗?表答案(即短+不生成计数器变量),还是应该使用上面的+ rm(j)?

2 个解决方案

#1


28  

Besides using the option as suggested by Matt Dowle, another way of changing the column classes is as follows:

除了使用Matt Dowle建议的选项外,更改列类的另一种方法如下:

dat[, (cols) := lapply(.SD, factor), .SDcols = cols]

By using the := operator you update the datatable by reference. A check whether this worked:

通过使用:=操作符,可以通过引用更新datatable。检查这是否有效:

> sapply(dat,class)
       ID   Quarter     value 
 "factor"  "factor" "numeric" 

As suggeted by @MattDowle in the comments, you can also use a combination of for(...) set(...) as follows:

正如@MattDowle在评论中建议的,您还可以使用for(…)set(…)的组合如下:

for (col in cols) set(dat, j = col, value = factor(dat[[col]]))

which will give the same result. A third alternative is:

结果是一样的。第三种选择是:

for (col in cols) dat[, (col) := factor(dat[[col]])]

On a smaller datasets, the for(...) set(...) option is about three times faster than the lapply option (but that doesn't really matter, because it is a small dataset). On larger datasets (e.g. 2 million rows), each of these approaches takes about the same amount of time. For testing on a larger dataset, I used:

在较小的数据集中,for(…)set(…)选项比lapply选项*倍(但这并不重要,因为它是一个小数据集)。在较大的数据集中(例如200万行),每种方法花费的时间都是相同的。对于大型数据集的测试,我使用:

dat <- data.table(ID=c(rep("A", 1e6), rep("B",1e6)),
                  Quarter=c(1:1e6, 1:1e6),
                  value=rnorm(10))

Sometimes, you will have to do it a bit differently (for example when numeric values are stored as a factor). Then you have to use something like this:

有时,您需要做一点不同的事情(例如,当数值作为一个因素存储时)。然后你必须使用这样的东西:

dat[, (cols) := lapply(.SD, function(x) as.integer(as.character(x))), .SDcols = cols]


WARNING: The following explanation is not the data.table-way of doing things. The datatable is not updated by reference because a copy is made and stored in memory (as pointed out by @Frank), which increases memory usage. It is more an addition in order to explain the working of with = FALSE.

警告:下面的解释不是数据。table-way做事的。由于复制被创建并存储在内存中(如@Frank所指出的),因此无法通过引用更新datatable,这将增加内存使用量。它更多的是为了解释with = FALSE的工作。

When you want to change the column classes the same way as you would do with a dataframe, you have to add with = FALSE as follows:

当您想要以与dataframe相同的方式更改列类时,必须加上= FALSE:

dat[, cols] <- lapply(dat[, cols, with = FALSE], factor)

A check whether this worked:

检查这是否有效:

> sapply(dat,class)
       ID   Quarter     value 
 "factor"  "factor" "numeric" 

If you don't add with = FALSE, datatable will evaluate dat[, cols] as a vector. Check the difference in output between dat[, cols] and dat[, cols, with = FALSE]:

如果不添加= FALSE, datatable将dat[, cols]作为一个向量进行计算。检查dat[, cols]和dat[, cols, with = FALSE]输出的差异:

> dat[, cols]
[1] "ID"      "Quarter"

> dat[, cols, with = FALSE]
    ID Quarter
 1:  A       1
 2:  A       2
 3:  A       3
 4:  A       4
 5:  A       5
 6:  B       1
 7:  B       2
 8:  B       3
 9:  B       4
10:  B       5

#2


1  

You can use .SDcols:

您可以使用.SDcols:

dat[, cols] <- dat[, lapply(.SD, factor), .SDcols=cols]

dat, cols] <- dat, lapply(。SD因素),.SDcols =关口]

#1


28  

Besides using the option as suggested by Matt Dowle, another way of changing the column classes is as follows:

除了使用Matt Dowle建议的选项外,更改列类的另一种方法如下:

dat[, (cols) := lapply(.SD, factor), .SDcols = cols]

By using the := operator you update the datatable by reference. A check whether this worked:

通过使用:=操作符,可以通过引用更新datatable。检查这是否有效:

> sapply(dat,class)
       ID   Quarter     value 
 "factor"  "factor" "numeric" 

As suggeted by @MattDowle in the comments, you can also use a combination of for(...) set(...) as follows:

正如@MattDowle在评论中建议的,您还可以使用for(…)set(…)的组合如下:

for (col in cols) set(dat, j = col, value = factor(dat[[col]]))

which will give the same result. A third alternative is:

结果是一样的。第三种选择是:

for (col in cols) dat[, (col) := factor(dat[[col]])]

On a smaller datasets, the for(...) set(...) option is about three times faster than the lapply option (but that doesn't really matter, because it is a small dataset). On larger datasets (e.g. 2 million rows), each of these approaches takes about the same amount of time. For testing on a larger dataset, I used:

在较小的数据集中,for(…)set(…)选项比lapply选项*倍(但这并不重要,因为它是一个小数据集)。在较大的数据集中(例如200万行),每种方法花费的时间都是相同的。对于大型数据集的测试,我使用:

dat <- data.table(ID=c(rep("A", 1e6), rep("B",1e6)),
                  Quarter=c(1:1e6, 1:1e6),
                  value=rnorm(10))

Sometimes, you will have to do it a bit differently (for example when numeric values are stored as a factor). Then you have to use something like this:

有时,您需要做一点不同的事情(例如,当数值作为一个因素存储时)。然后你必须使用这样的东西:

dat[, (cols) := lapply(.SD, function(x) as.integer(as.character(x))), .SDcols = cols]


WARNING: The following explanation is not the data.table-way of doing things. The datatable is not updated by reference because a copy is made and stored in memory (as pointed out by @Frank), which increases memory usage. It is more an addition in order to explain the working of with = FALSE.

警告:下面的解释不是数据。table-way做事的。由于复制被创建并存储在内存中(如@Frank所指出的),因此无法通过引用更新datatable,这将增加内存使用量。它更多的是为了解释with = FALSE的工作。

When you want to change the column classes the same way as you would do with a dataframe, you have to add with = FALSE as follows:

当您想要以与dataframe相同的方式更改列类时,必须加上= FALSE:

dat[, cols] <- lapply(dat[, cols, with = FALSE], factor)

A check whether this worked:

检查这是否有效:

> sapply(dat,class)
       ID   Quarter     value 
 "factor"  "factor" "numeric" 

If you don't add with = FALSE, datatable will evaluate dat[, cols] as a vector. Check the difference in output between dat[, cols] and dat[, cols, with = FALSE]:

如果不添加= FALSE, datatable将dat[, cols]作为一个向量进行计算。检查dat[, cols]和dat[, cols, with = FALSE]输出的差异:

> dat[, cols]
[1] "ID"      "Quarter"

> dat[, cols, with = FALSE]
    ID Quarter
 1:  A       1
 2:  A       2
 3:  A       3
 4:  A       4
 5:  A       5
 6:  B       1
 7:  B       2
 8:  B       3
 9:  B       4
10:  B       5

#2


1  

You can use .SDcols:

您可以使用.SDcols:

dat[, cols] <- dat[, lapply(.SD, factor), .SDcols=cols]

dat, cols] <- dat, lapply(。SD因素),.SDcols =关口]