《算法》一书中,在算法3.1中提到了Map的实现,这里根据书上的思想,用单向链表简单写了写。
#ifndef SEQUENTIAL_H #define SEQUENTIAL_H template<class K, class V> class Link { private: class Node { public: K key=; V value=; Node *next=nullptr; public: Node(K, V, Node*); Node(){}; }; private: Node *first; int _length; int _capicty; public: Link(); V& get(K key); void put(K key, V value); int Size() const; int Capicty() const; bool Delete(K key); ~Link(); }; template<class K, class V> Link<K, V>::Node::Node(K key, V value, Node* node) { this->key = key; this->value = value; next = node; } template<class K, class V> V& Link<K, V>::get(K key) { Node *x = first; ; i < _length&& x != nullptr; i++) { if (x->key == key) return x->value; x = x->next; } } //如果没有K,则在链表尾加入新的键值对 template<class K, class V> void Link<K, V>::put(K key, V value) { Node *x = first; bool flag = false; ; i < _length; i++) { if (x->key == key) { x ->value = value; flag = true; break; } x = x->next; } if (!flag) { >= _capicty) { Node *m = first; _capicty *= ; Node **n = new Node*[_capicty]; ; i < _capicty; i++) { n[i] = new Node(); } ; i < _capicty - ; i++) { n[i]->next = n[i + ]; } ; i < _capicty && m!=nullptr; i++) { n[i] = m; m = m->next; } delete[] first; first = n[]; } int l = _length; Node *y = first; while (l) { y = y->next; l--; } y->value = value; y->key = key; y->next = y->next; _length++; } } template<class K, class V> Link<K, V>::~Link() { if (first != nullptr) delete[] first; } template<class K, class V> Link<K, V>::Link() { Node** n = ]; _capicty = ; _length = ; ; i < ; i++) { n[i] = new Node(); } ; i < -; i++) { n[i]->next = n[i+]; } first = n[]; } template<class K, class V> int Link<K, V>::Size() const { return _length; } //当前链表容量 template<class K, class V> int Link<K, V>::Capicty() const { return _capicty; } template<class K, class V> bool Link<K, V>::Delete(K key) { bool flag = false; Node* n = first->next; Node* b = first; if (b->key == key) { _length--; first = first->next; return true; } ; i < _length; i++) { if (n->key == key) { b->next = n->next; _length--; flag = true; break; } b = b->next; n = n->next; } return flag; } #endif