5 seconds
256 megabytes
standard input
standard output
Let's denote as L(x, p) an infinite sequence of integers y such that gcd(p, y) = 1 and y > x (where gcd is the greatest common divisor of two integer numbers), sorted in ascending order. The elements of L(x, p) are 1-indexed; for example, 9, 13 and 15 are the first, the second and the third elements of L(7, 22), respectively.
You have to process t queries. Each query is denoted by three integers x, p and k, and the answer to this query is k-th element of L(x, p).
The first line contains one integer t (1 ≤ t ≤ 30000) — the number of queries to process.
Then t lines follow. i-th line contains three integers x, p and k for i-th query (1 ≤ x, p, k ≤ 106).
Print t integers, where i-th integer is the answer to i-th query.
3
7 22 1
7 22 2
7 22 3
9
13
15
5
42 42 42
43 43 43
44 44 44
45 45 45
46 46 46
187
87
139
128
141 题意 q个询问 大于x,第k个与p互质的数
解析 对于一个数 mid 我们可以容斥算出1-mid 与 p互质的数有多少,所以二分答案就可以了。
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n")
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl
#define ffread(a) fastIO::read(a)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn=1e4+;
const ll mod=;
ll yinzi[maxn],cnt;
void euler(ll n)
{
cnt=;
ll a=n;
for(ll i=; i*i<=a; i++)
{
if(a%i==)
{
yinzi[cnt++]=i;
while(a%i==)
a/=i;
}
}
if(a>)
yinzi[cnt++]=a;
}
ll solve(ll n)
{
ll ans=;
for(ll i=; i<(<<cnt); i++)
{
ll temp=,jishu=;
for(ll j=; j<cnt; j++)
{
if(i&(<<j))
temp=temp*yinzi[j],jishu++;
}
if(jishu==)
continue;
if(jishu&)
ans+=n/temp;
else
ans-=n/temp;
}
return ans;
}
int main()
{
ll t,n,m,k;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld",&m,&n,&k);
euler(n);
ll ans1=m-solve(m);
ll l=m+,r=1e7;
while(l<=r)
{
ll mid=(l+r)/;
ll cur=mid-solve(mid)-ans1;
if(cur<k)
l=mid+;
else
r=mid-;
}
printf("%lld\n",r+);
}
}
Educational Codeforces Round 37 (Rated for Div. 2) G的更多相关文章
-
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
-
Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
-
Educational Codeforces Round 37 (Rated for Div. 2) 920E E. Connected Components?
题 OvO http://codeforces.com/contest/920/problem/E 解 模拟一遍…… 1.首先把所有数放到一个集合 s 中,并创建一个队列 que 2.然后每次随便取一 ...
-
Educational Codeforces Round 37 (Rated for Div. 2)
我的代码应该不会被hack,立个flag A. Water The Garden time limit per test 1 second memory limit per test 256 mega ...
-
[Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
-
Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
-
Educational Codeforces Round 58 (Rated for Div. 2) G 线性基
https://codeforces.com/contest/1101/problem/G 题意 一个有n个数字的数组a[],将区间分成尽可能多段,使得段之间的相互组合异或和不等于零 题解 根据线性基 ...
-
Educational Codeforces Round 53 (Rated for Div. 2)G. Yet Another LCP Problem
题意:给串s,每次询问k个数a,l个数b,问a和b作为后缀的lcp的综合 题解:和bzoj3879类似,反向sam日神仙...lcp就是fail树上的lca.把点抠出来建虚树,然后在上面dp即可.(感 ...
-
Educational Codeforces Round 51 (Rated for Div. 2) G. Distinctification(线段树合并 + 并查集)
题意 给出一个长度为 \(n\) 序列 , 每个位置有 \(a_i , b_i\) 两个参数 , \(b_i\) 互不相同 ,你可以进行任意次如下的两种操作 : 若存在 \(j \not = i\) ...
随机推荐
-
jq focus 在火狐(Firefox)下无效
今天写代码的时候发现,在blur事件里面写focus获取焦点无效, $input.blur(function(){ ……………… $input.focus(): } 而且只是在火狐下面无效而已,很明显 ...
-
operating expense &; captial expenditure
营运成本(营业成本, operating expense, OPEX) 指的是运行企业的持续性.消耗性的支出,与之对照的是资本支出(captial expenditure, CAPEX).例如:购买影 ...
-
Autowired properities class
1. Properties类 @ConfigurationProperties(locations = "classpath:build.properties") @JsonInc ...
-
数据结构C语言版 弗洛伊德算法实现
/* 数据结构C语言版 弗洛伊德算法 P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> # ...
-
分享一个嵌入式httpdserver开发库 - boahttpd library
http://sourceforge.net/projects/boahttpd/ 一个C接口的开发库,适用于 windows/linux/或其它嵌入式平台,支持CGI扩展,支持多线程.採用面向对象开 ...
-
(转载)Log4Net 在多层项目中的使用小记
(原创)Log4Net 在多层项目中的使用小记 这几天刚好在调整一个项目,把一些自己不是很清楚的东西先试验一下,这篇文章主要是对我在项目中需要使用Log4Net的一些记录.网上有很多相关的教程,但是各 ...
-
Scrapy基础(七)————图片的简单下载
scrapy 提供了自动下载图片到本地的功能,通过项目管道设置 一: 在setting 文件中ITEM_PIPELINE添加: 'scrapy.pipelines.images.ImagesPipel ...
- vs 附加进程 iis进程显示
-
Implementation Notes: Runtime Environment Map Filtering for Image Based Lighting
https://placeholderart.wordpress.com/2015/07/28/implementation-notes-runtime-environment-map-filteri ...
-
JAVA中return的用法
public class TestReturn { public static void main(String args[]) { TestReturn t = new TestReturn(); ...